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Abstract 

Classical solutions for the LTB of beams which are widely used nowadays assume a 

perfectly straight beam when the buckling occurs. In the reality however, prebuckling 

deformations exist. Although not too numerous, several studies showed that prebuckling 

deformations can have a significant effect on the values of critical moment. However, these 

studies are limited to the most basic case but still give several analytical solutions for the 

seemingly same case. Furthermore, the effect of torsional rigidity, end supports, and 

intermediate lateral supports are hardly discussed or not discussed at all within the context of 

prebuckling deformations. Finally, there are very little studies that used a general numerical 

method (FEM) to study the effect of prebuckling deformations.  

This study aims towards deepening the understanding of the LTB considering 

prebuckling deformations by considering several factors: (i) causes of discrepancies in the 

literature, (ii) effect of torsional rigidity (open vs closed sections), (iii) effect of end supports, 

and (iv) effect of intermediate lateral and torsional supports. Both analytical and numerical 

approaches are taken. For the analytical solutions, the energy method is used. For the numerical 

solutions, the Finite Element Method (FEM) is employed using both beam and shell elements, 

and two types of analysis: the geometrically nonlinear with imperfections analysis (GNIA), and 

the linear buckling analysis (LBA). However, since the LBA does not account for prebuckling 

deformations, a specialized iterative process that alternate between static analysis and buckling 

analysis is proposed. The iterative LBA and GNIA methods were shown to yield similar results. 

Several interesting results were found. First, the sources of discrepancies in the literature 

were shown to come from various options during the derivations, as well as 

simplifications/assumptions that are either appropriate or not depending on the case, which 

means there is no definite single critical moment formula that works for all cases. Furthermore, 

it was found that the torsional rigidity plays an important role in how the prebuckling 

deformations affect the critical moment. The end supports were also shown to have a significant 

influence on the effect of prebuckling deformations, with some end supports causing a decrease 

in critical moment due to prebuckling deformations rather than an increase. The intermediate 

lateral supports were also shown to have a significant influence, which is caused by a ‘switch’ 

in the buckling shape depending on which type of intermediate support is used. A 

comprehensive shape analysis study was conducted to further understand the behaviors. Other 

support conditions, loading conditions, or cross sections can be investigated in future studies.  
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Chapter 1: Introduction 

1.1 Lateral Torsional Buckling (LTB) 

Although thin-walled steel structural members offer the advantage of high carrying 

capacity with relatively low weights, they have some disadvantages, one of the most notable 

being the instabilities due to local and global buckling. Several types of instabilities can occur 

to steel structural members, such as: flexural buckling [1], lateral torsional buckling [2], local 

buckling [3], pure torsional buckling [4], distortional buckling [5], or combined types of 

buckling, such as: interaction buckling [6] and coupled instabilities [7]. 

In this research, the lateral-torsional buckling (LTB) is discussed. The beam deflection 

takes place in the plane of the loading (referred to as primary displacement), and the deflection 

gradually increases (approximately linearly) as the load increases. Even if the material is 

perfectly elastic, which is assumed here, stable equilibrium in the primary displaced shape is 

not possible for an arbitrary load, since at a certain load level, the member starts to develop 

rapidly increasing lateral displacements (referred to as secondary displacement) characterized 

by twisting rotations and translations perpendicular to the plane of loading as shown in Figure 

1-1. 

 

Figure 1-1: Lateral torsional buckling (LTB) of a steel beam. 

One of the earliest publications discussing the topic was back in 1899 [2] which did not 

use the term lateral torsional buckling directly but discussed the instability of thin flat bars by 

a “combined lateral displacement and twist”. It is mentioned that the torsional rigidity is the 

main affecting factor of such failure, rather than the flexural rigidity. Another early work was 

[8], which was done by Stephen P. Timoshenko and discussed the failure due to the lateral 

displacement of a rod, which is always accompanied by a twisting or overturning. It is 
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mentioned that such a rod would have two very different principal moments of inertia and is 

subjected to bending forces in the direction of the greater stiffness. 

In fact, Timoshenko was one of the main contributors in the field of LTB, he published 

various papers on the topic [8,9,10]. Later in his book [11], Timoshenko discussed the LTB of 

beams under various conditions, such as beams in pure bending, simply supported, cantilevers, 

beams with narrow rectangular cross sections, as well as other cases. LTB, or the Lateral 

Buckling as referred to in the book, occurs when the beam is subjected to bending in the plane 

of the highest moment of inertia, by the lateral buckling (in the direction of the plane of the 

lowest moment of inertia). Differential equations are established assuming a perfect non-

deflected beam, and a closed formed solutions are provided for the critical moment for several 

cases. These formulae are still (more or less) being used until this day in many design codes 

and practices. It is also to mention that other early works also investigated the same topic, such 

as [12]. 

1.2 Energy method 

The energy method for the stability of structures involves assessing the potential energy 

of a deformed structure to determine if small perturbations will increase or decrease the energy, 

indicating stability or instability, respectively [11, 13]. Which is based on the Lagrange-

Dirichlet theorem [14], stating that a system is at equilibrium in a certain state when the total 

potential energy of the system is at the absolute minimum at that state [15, 16]. In the context 

of buckling, this would involve determining the total potential energy of the structural element 

under certain loading and boundary conditions, which includes a combination of strain energy 

due to deflection, as well as external potential energy due to applied load [17]. Many studies 

used the energy method for the calculation of the critical load for LTB of beams by assuming 

shape functions and deriving the energy formulation [18-21].  

For the calculation of potential energy, the strain energy is first calculated. The strain 

energy of a member under bending is equal to the integration of stress times the strain over the 

volume of the beam [22]. This can be broken down into components of curvatures and 

stiffnesses as it will be shown in following chapters. Expressions for the curvature in both 

directions, as well as the twisting curvature are needed, as can be obtained from [23]. The 

curvature in the longitudinal direction is also used for the calculation of the external energy. 

The calculation of the curvatures involves establishing a proper transformation matrix from the 

global to local coordinates [24], as well as establishing shape functions which satisfy the 
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boundary conditions. In this study, various transformation matrices, leading to different 

curvature functions are considered. This will be shown in detail in Chapter 2. 

1.3 Linear Buckling Analysis (LBA) 

One of the most commonly used techniques for the prediction of buckling loads is what 

is known as the Linear Buckling Analysis (LBA). The word Linear comes from the assumption 

of linear material behavior and small deformations. It focuses on the initial stability of the 

structure, and not on the post-buckling behavior [40, 41]. LBA determines the bucking loads 

and their corresponding buckling modes of a structure. This is done by solving an eigenvalue 

problem, in this context, the critical loads, as their corresponding eigenvectors, which are the 

buckling shapes associated with these critical loads. The eigenvalue problem can be expressed 

as  

(𝐾 − 𝜆𝐾𝑔)𝜙 = 0 (1) 

with K being the stiffness matrix, 𝐾𝑔being the geometric stiffness matrix, λ being the 

eigenvalues representing the buckling loads, and ϕ the eigenvectors representing the buckling 

modes [42,43].  

1.4 Geometrically Nonlinear Analysis with Imperfections (GNIA) 

Although Linear Buckling Analysis is a good way for predicting the possible buckling 

loads and their associated buckling modes, it is very limited and can be only used for initial 

estimates, as it considers a perfect geometry and does not deal with the prebuckling, or post 

buckling behaviors. On the other hand, another method for the assessment of the stabilities of 

structures is the Geometrically Nonlinear with Imperfections Analysis (GNIA) method [44]. 

The concept was probably first applied by Young [45] for columns and was later extended to 

other types of buckling. GNIA can be a useful tool for predicting the load-bearing capacity, as 

first proposed in [46]. The approach and resulting formula, known as the Ayrton-Perry 

approach/formula, are named after the authors.  

This approach is the basis of the European buckling curves, which were proposed by 

[47], and which are still in use in the current Eurocode standards, e.g. [48], for both column 

buckling and LTB. It is a nonlinear method which can account for large deformations, as well 

as initial imperfections. This makes it more capable of predicting real life behaviors of the 

structure. However, it should be noted that material nonlinearity is not considered in this 
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method, making it distinct from the Geometrically and Materially Nonlinear with Imperfections 

method (GMNIA) [49].  

The GNIA method often uses a numerical method for the solution, typically the FEM 

method. Compared to the LBA method, the GNIA is more computationally demanding since 

the solution follows the load path, resulting in many sub-steps of which the stiffness matrix is 

updated constantly, with an iterative process in each load step. This process makes it not as 

widely used as much as the LBA, especially when large deformations and the post buckling 

behavior are not of the greatest importance. However, it is a powerful tool for research purposes, 

or for special structures [50,51]. 

. 



 

Chapter 2: Effect of Prebuckling Deformations 

2.1 Overview 

Although classical solutions still used nowadays consider a perfect beam when the 

buckling occurs, neglecting prebuckling deformations, it was observed in previous studies that 

the primary (in-plane) deflections might influence the solution of LTB, since when the buckling 

occurs, the structure is already in a deflected state. If this deflected shape (i.e., prebuckling 

deflection) is considered in the LBA, the associated critical load is different from the one 

obtained from an undeflected shape. It is reasonable to assume that prebuckling deflection is 

never zero, however, whether it has an important or negligible effect on the buckling depends 

on the structure. It is worth emphasizing here that prebuckling deflections are not the same as 

imperfections, since they are due to the loading, and exist even if the original structure is perfect. 

When prebuckling deflections are considered, the problem cannot be expressed as an 

eigen-value problem, since the critical load value is dependent on the deflected shape, but the 

deflected shape is dependent on the load (which, when buckling occurs, must be equal to the 

critical load). Still, the problem remains solvable under certain circumstances and with certain 

simplifications. In fact, the effect of the prebuckling deflection was included even in the very 

first analytical solution for the LTB problem by Michell, in [2]. Later, the problem was 

discussed by several researchers [52-77], as will be discussed in detail in this chapter.  

There seems to be a consensus in the available literature that the prebuckling 

deformations increase the critical moment, and that the increase is dominantly determined by 

the lateral rigidity of the beam. However, there are some discrepancies, both in the proposed 

analytical expressions and in the numerical results. The research presented herein is focused on 

understanding the role of prebuckling deflections on LTB, exploring the source of the 

contradictory results in the literature. This chapter is dedicated to the basic case, which is: 

single-span beams subjected to uniform moment, the cross-section is doubly symmetric, the 

bending is about the major axis of the cross-section, and the end supports are pinned (forked) 

in the direction of the minor axis bending. 

In Section 2.2, a detailed review of the literature is provided, and in Section 2.3 the 

various steps of the analytical derivation are presented, highlighting when it is appropriate to 

do certain assumptions/simplifications. Section 2.4 gives the critical moment formula variants 

and provides elementary numerical results to illustrate the effect of the introduced assumptions 

and/or simplifications. Finally, the results are discussed in section 2.5. 
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2.2 Literature review 

In this Section, a literature review is provided, focusing on literature where the effect of 

prebucking deflections on the LTB of doubly-symmetric beams is discussed. While 

acknowledging the researchers who have contributed to this topic would be commendable, the 

primary reason of the detailed review is that the available papers are not too numerous, but still 

include slightly different formulae for the seemingly same case, as well as include certain 

contradictory statements or suggestions. 

As far as is known, the effect of pre-buckling deformations on the lateral-torsional 

buckling of beams was first reported by Michell [2]. In his paper, differential equations (D.E.-

s) are formulated and solved for various beam-column cases, and two simple experiments are 

reported to validate the theoretical results. A particular case considered in the derivations is the 

basic case. A solution is derived for the critical moment 𝑀𝑐𝑟 , written (using the notations 

normally used nowadays) as: 

𝑀𝑐𝑟 = 𝑀𝑟𝑐0 √(1 −
𝐸𝐼𝑦

𝐸𝐼𝑥
)⁄  

with 𝑀𝑐𝑟0 =
𝜋

𝐿
√𝐸𝐼𝑦𝐺𝐽 

(1) 

where 𝑀𝑐𝑟0 is the critical moment without the effect of prebuckling deformations, 𝐼𝑥 

and 𝐼𝑦 are the second moments of area for the 𝑥 (major) and 𝑦 (minor) axes, respectively (see 

Fig. 1-1),  𝐽 is the torsional inertia, 𝐿 is the length of the beam, and 𝐸 and 𝐺 are the Young’s 

modulus and shear modulus, respectively. It is to observe that the warping effect is totally 

disregarded. The results obtained from this formula are in line with later results if the cross-

section has a small warping constant, e.g., in the case of a narrow rectangular section.  

In fact, while the paper does not explicitly state this limitation to narrow rectangular 

shapes, such members are considered in the conducted experiments. Another remark is that the 

paper does not discuss the “effect of prebuckling deformations” separately, i.e., there is no 

distinct solution provided with and without prebuckling deformations; instead, it explicitly 

assumes the presence of prebuckling deformations and solves the equations accordingly. 

Another early work was done by Prandtl [52], who also established the D.E.-s for the LTB 

problem (without considering warping), and also solved them for a few cases, but without 

considering the prebuckling deflections. 
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An important contribution to LTB was made by Timoshenko [8], where the effect of 

warping for thin-walled members in twist was first introduced in the context of I-section 

members. Timoshenko published the first critical moment formula with considering warping, 

particularly for I-shaped members [53]. The formula is essentially identical to the one known 

nowadays, though in [53] it is formally different and expressed specifically for I-shaped beams 

only. It is: 

𝑀𝑐𝑟0 =
𝜋

𝐿
√𝐸𝐼𝑦𝐺𝐽 (1 +

𝜋2𝐸𝐼𝑤
𝐺𝐽𝐿2

) (2) 

where 𝐼𝑤 is the warping modulus. Later, in [10] a solution is presented for clamped-

clamped beams (without the prebuckling effect).  

Chwalla [54] formulated the D.E.-s of the beam-column buckling problem considering 

the warping effect and accounting for the prebuckling deflections, and provided closed-form 

solutions for several cases. Regarding the effect of prebuckling deformations, the derivation is 

presented for the basic case with narrow rectangular sections, leading to the following formula: 

𝑀𝑐𝑟 = 𝑀𝑐𝑟0 √(1 −
𝐸𝐼𝑦

𝐸𝐼𝑥
) (1 −

2𝐺𝐽

𝐸𝐼𝑥
)⁄  (3) 

with 𝑀𝑐𝑟0 as given by Eq. (1). In [54], it is also proposed to introduce an equivalent 

lateral bending stiffness to consider the effect of prebuckling deflections, suggesting that the 

proposed equivalent bending stiffness can be employed to any LTB case. It is also commented 

that 𝐺𝐽/𝐸𝐼𝑥 is typically small, therefore, can be neglected. 

LTB is discussed by Davidson [55], also for I-sections (and as special cases: narrow 

rectangular sections). Analytical solutions for both without and with considering the 

prebuckling deflections are given, assuming elastic end supports with separate stiffnesses for 

the global rotation of the beam ends (about the minor axis) and rotation of the flanges (which 

latter one could be “translated” to today’s terminology as elastic warping support). Analytical 

solutions are given, but typically not in closed format, due to the complexity of the problem. 

Explicit formulae can be derived only for some simple cases, e.g., if the supports stiffnesses are 

zero (i.e., forked supports) and 𝐼𝑤 = 0 (e.g., rectangular narrow section), the derivation leads 

to the following formula: 
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𝑀𝑐𝑟 = 𝑀𝑐𝑟0 √(1 −
𝐸𝐼𝑦

𝐸𝐼𝑥
) (1 −

𝐺𝐽

𝐸𝐼𝑥
) ⁄  (4) 

with 𝑀𝑐𝑟0 as given by Eq. (1). This is nearly (but not exactly) identical to the solution 

in [6]. 

The next appearance of the same problem is in [56] by Pettersson, focusing on mono-

symmetric cross-sections. The displacement functions of beams subjected to combined loading 

(biaxial bending and torsion) are derived. Mostly simply supported beams are considered, but 

3-span beams are also discussed. Critical moment expressions with and without the prebuckling 

deflection are provided for a few cases. For rectangular section beams under uniform major-

axis moment, the derived formula is identical to the one in [55], see (Eq. 4).  

In [57], Kerensky and his colleagues summarized the background of the then-current 

British Standard, and for the calculation of critical moment, a formula with considering the 

effect of prebuckling deflection was proposed, using the 1/√1 − 𝐼𝑦/𝐼𝑥 factor as in Eq. (1). A 

few years later, Clark and Knoll extended the critical moment formula for a few cases [58]. For 

clamped beams with narrow rectangular cross-sections, they derived the formula as follows: 

𝑀𝑐𝑟 = 𝑀𝑐𝑟0 (1 −
𝐸𝐼𝑦

𝐸𝐼𝑥
) √(1 −

𝐸𝐼𝑦

𝐸𝐼𝑥
) (1 −

𝐺𝐽

𝐸𝐼𝑥
) ⁄  

with  𝑀𝑐𝑟0 =
2𝜋

𝐿
√𝐸𝐼𝑦𝐺𝐽 

(5) 

In the above equation, the 𝑀𝑐𝑟0 expression is the one normally used nowadays (if the 

warping effect is negligible), but the modification factor due to the prebuckling deflections is 

significantly different from those previously derived for the pinned-pinned case. This is, 

therefore, the first publication where the influence of the supports on the prebuckling effect is 

explicitly reported. Moreover, a formula is derived for a doubly-symmetric I-section beam in 

[58], where 𝑀𝑐𝑟0  is identical to that derived by Timoshenko, and the modification factor 

accounting for the effect of prebuckling deflections is the same as that derived by Davidson. 

The problem was revisited by Trahair and Woolcock. In [59] a set of D.E.-s with 

considering the effect of prebuckling deformations, assuming doubly symmetrical cross-

sections and pinned end supports, is derived. The solutions for a few cases are discussed (mostly 

numerically). A closed-form solution is given for the basic case, which can be written as: 
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𝑀𝑐𝑟 = 𝑀𝑐𝑟0 √(1 −
𝐸𝐼𝑦

𝐸𝐼𝑥
) (1 −

𝐺𝐽

𝐸𝐼𝑥
(1 +

𝜋2𝐸𝐼𝑤
𝐺𝐽𝐿2

))⁄  (6) 

where 𝑀𝑐𝑟0 is the same as proposed by Timoshenko, see Eq. (2). 

The next important contribution is made by Vacharajittiphan, Trahair and Woolcock 

[60], where a general approach is introduced for describing the three-dimensional behavior of 

thin-walled members in bending, assuming doubly-symmetrical cross-sections. From the 

general description, a simplified set of D.E.-s is derived. Since the aim was to calculate the 

critical load, i.e., to capture the point of bifurcation of the equilibrium, it was assumed that the 

lateral and torsional displacements are infinitesimally small, while the primary (i.e., in the plane 

of the bending) displacements are moderately large. The simplifications are introduced 

accordingly, in a consistent way, as follows: the lateral and torsional displacements are 

approximated by linear terms, while the primary displacement is approximated by up to 

quadratic terms. The derived formula is identical to the one in [59], see Eq. (6). 

Roberts and Azizia developed a beam finite element model for the analysis of thin-

walled members with open cross-sections [61]. The used variational form of the problem is 

aimed to get weak (approximate) solutions numerically, as usual in any finite element 

implementation. Arbitrary open cross-sections, including asymmetrical ones, are considered. 

The developed beam finite element is based on Vlasov’s thin-walled beam theory, and is 

employed to solve simple column and beam problems using an incremental-iterative solution 

scheme. Though the effect of prebuckling deformations is not specifically discussed, it is 

mentioned that “…when these nonlinear strains are incorporated in a general instability analysis 

…, the influence of pre-buckling displacements is automatically taken into account”. A 

subsequent research [62] discusses the effect of prebuckling deformations, based on the same 

principles as in [61]. However, analytical solutions are also provided. For the basic case, a 

critical moment formula is derived, which is identical with the one in [59, 60]. An analytical 

solution for beams with monosymmetric T-shaped cross-sections, assuming that 𝐼𝑤 is zero, is 

also provided.  

The next noteworthy contribution is a pair of papers by Pi and Trahair [63-54]. In [63], 

the earlier work of Roberts and Azazian is criticized. The criticism is on the basis that the finite 

element solution provided in [61-62] leads to a quadratic eigenvalue problem due to the 

presence of second-order terms, and instead of using an iterative approach, the problem in [61] 

is solved as a linear eigenvalue problem. Other issues in [61] were addressed, too, such as the 
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consideration of “constant prebuckling in-plane rotations and curvatures” along each element, 

which is not an accurate representation, as well as the negligence of the additional moments the 

axial loads cause due to the presence of prebuckling deformations. 

The geometrical description of the problem in [63] is similar to the one in [60], but there 

are some important differences and/or advancements. One is that energy equations are provided 

and used. Another one is that the equations are developed for mono-symmetrical cross-sections, 

too. Moreover, the geometric description is more accurate and/or general. Finally, more terms 

are included in the approximations (compared to [60]), though when it comes to the derivation 

of actual 𝑀𝑐𝑟 formulae, the kept nonlinear terms are more-or-less the same. Two new versions 

of 𝑀𝑐𝑟 formulae are derived and presented in [64], but only for the basic case. One formula, 

termed as “linearized”, is obtained by neglecting “the terms containing the second-order 

prebuckling deformations … in the energy equation”, as follows: 

𝑀𝑐𝑟 = 𝑀𝑐𝑟0 [(1 −
𝐸𝐼𝑦

𝐸𝐼𝑥
)(1 −

𝐺𝐽

2𝐸𝐼𝑥
(1 +

𝜋2𝐸𝐼𝑤
𝐺𝐽𝐿2

))]⁄  (7) 

This formula is immediately criticized, stating that this expression “overestimates the 

critical moment and shows that second-order terms in the energy equation should not be 

neglected”. The other, believed to be more accurate, formula is as follows: 

𝑀𝑐𝑟 = 𝑀𝑐𝑟0 √(1 −
𝐸𝐼𝑦

𝐸𝐼𝑥
) (1 −

𝐺𝐽

2𝐸𝐼𝑥
(1 +

𝜋2𝐸𝐼𝑤
𝐺𝐽𝐿2

))⁄  (8) 

In both of the above formulae 𝑀𝑐𝑟0 is identical to the one proposed by Timoshenko, 

see Eq. (2). 

Eq. (8) is almost identical to the ones published in [59-61]. The only difference is the 

appearance of a ‘2’ in the denominator of the 𝐺𝐽/2𝐸𝐼𝑥 term. The authors mention this slight 

difference, but do not explain or discuss. It is to mention, that later, in the book of Trahair [65], 

Eq. (8) is presented. (It is to note that, in [64], an 𝑀𝑐𝑟 formula is proposed for mono-symmetric 

cross-sections. It is not clear how it is obtained, but it is clearly different from the one derived 

by Roberts and Azizian [62] for mono-symmetric sections).  

In [64], the analytical and numerical results are compared to those obtained from 

experiments. The test-based critical values are determined by the so-called Southwell-plot 

technique. Looking at the results, it is fair to say that: (i) the linearized formula is clearly 

incorrect, (ii) the experimental results are perhaps somewhat closer to the numerical ones if the 
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prebuckling deflections are considered, (iii) but the experimental results are not convincing 

regarding the effect of prebuckling deflections.  

Though in [66], the LTB problem is not discussed, it is worth mentioning here because 

the paper expresses some criticism regarding the mathematical background of the derivations 

in [63]. 

In [67], Andrade and Camotim discuss the LTB of prismatic and tapered beams, both 

with and without the effect of prebuckling deflections. The developed and utilized formulation 

includes some approximations. It is suggested that the prebuckling effect can be taken into 

consideration by the  1/√1 − 𝐼𝑦/𝐼𝑥 factor, same as in [2,57]. 

Machado and Cortinez also investigated doubly-symmetric beams considering the effect 

of prebuckling deflections [68]. The novelty in this research is the consideration of transverse 

shear deformations, both along the major and minor axes, assuming laminated material. 

Variational principles are used, and closed-form solutions are provided. As a special case, if the 

shear deformations are neglected, the solution is identical to that given in [63]. Various 

transverse load cases are investigated, including the load height effect on simply supported 

single-span beams and cantilevers. The general observation is that the shear deformations 

decrease the critical loads, while the prebuckling deflections increase it. (Note, the effect of 

various laminations is also discussed.) 

Mohri and Potier-Ferry studied doubly- and mono-symmetric beams under various 

loading conditions, including transverse loading with varying load application heights. In [69], 

D.E.-s considering the effect of prebuckling deflections are developed and solved. In the basic 

case, the same solution as in [60] is obtained. It is also commented that in engineering practice 

it is acceptable to account for the prebuckling effect by the 1/√1 − 𝐼𝑦/𝐼𝑥 factor. 

In [70], Torkamani and Roberts derived new energy equations for flexural-torsional and 

lateral-torsional buckling of thin-walled beam-columns. The equations are very similar to those 

in [63]. There are a few differences, however, in how the nonlinear displacements of an arbitrary 

cross-section point are approximated. These differences are not discussed or explained. Some 

numerical examples are presented, one is related to LTB, but without special attention to the 

effect of prebuckling deflections. 

Mohri, Damil, and Potier published another article on the same topic [71]. The theory is 

developed for general open cross-sections, using variational principles and D.E.-s, with the 
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focus being on monosymmetric I- and T-shaped sections. When considering doubly symmetric 

sections, it is again suggested that the prebuckling effect can be considered by the 1/√1 − 𝐼𝑦/𝐼𝑥 

factor. 

In [72], a new version of the weak formulation of the lateral buckling problem is 

published by Attard and Kim. The kinematic assumptions are similar to those presented in 

earlier papers, and the novelty is the consideration of hyperelastic materials. The derived 

general formulae are utilized to re-derive an 𝑀𝑐𝑟 formula for the basic case, which is found to 

be identical to the one presented in [60]. (Also, they try to derive the 𝑀𝑐𝑟 formula for mono-

symmetric cross-sections; in their results, the derivation leads to a cubic equation from which 

𝑀𝑐𝑟 cannot be expressed in closed format. However, this formula is clearly different from that 

in [62] or in [64].) 

The topic is discussed by Erkmen and Attard in [73], considering the shear deformations 

(similarly as discussed earlier in [68]). As for the analytical solution, the earlier formula for the 

basic doubly-symmetric case is repeated, where the effect of shear is said to be nonexistent. 

However, numerical (finite element) solutions are also provided and compared with results 

from the analytical ones. It is noted that “in order to induce bifurcation type post-buckling 

behavior, an initial small horizontal load is applied in the nonlinear analysis”. The numerical 

results, hence, were obtained by nonlinear incremental analysis, not eigen-value analysis. It is 

declared that the analytical closed-form solution “is a lower bound to the results based on the 

nonlinear analysis procedure”. In other words, the authors declare that the effect of prebuckling 

deformations is even larger than what is predicted by the analytical formulae. The question is 

discussed again by Mohri, Damil and Potier-Ferry [74], but the discussion and conclusions are 

rather similar to those of [71].  

In [75], the LTB behavior of U-shaped sections (i.e., unlipped channel) is discussed by 

Beyer et al. The energy method is used, and the effect of prebuckling deflections is considered. 

The main focus of the paper is on minor-axis bending. For major axis bending (which is similar 

to a doubly symmetrical section), the prebuckling effect is considered by the 1/√1 − 𝐼𝑦/𝐼𝑥 

factor.  

In the next related study, conducted by Pezeshky and Mohareb [76], the main focus is 

on the distortional deformations, though shear deformations are optionally considered, too. 

Variational principles are employed, but closed-form solutions are not provided. From the 
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numerical results it can be deduced that the shear deformations have small effect, but the 

distortional deformations noticeably reduce the 𝑀𝑐𝑟/𝑀𝑐𝑟0 ratio. 

A more recent relevant paper is published by Su et al, see [77]. Their paper discusses 

the effect of prebuckling deformations, but the subject is essentially different from classic 

structures in structural engineering. The studied structure is the so-called “serpentine 

interconnect”, which is a beam with a serpentine-shaped axis. The prebuckling deflections are 

huge compared to classic structures, accordingly, the effect of prebuckling deformations is 

drastic. Some analytical solutions and numerical examples are shown. As a special case, the 

classic LTB problem is considered, to which a closed-form solution is derived. The beam is 

assumed to have a rectangular cross-section, but not necessarily narrow rectangular. The 

warping effect is not directly considered. The obtained closed-form solution for the critical 

moment is identical to the one first derived in [55], with the only difference being that the 

torsion constant is different. The method is developed essentially for numerical solutions. It is 

worth mentioning that some of the numerical results predict higher values than the analytical 

solution, suggesting that the analytical solution is not perfectly precise. 

Finally, the most recent paper investigating the effect of prebuckling deformations was 

done by Zhang and Kim [78]. The study employed finite element method with various 

numerical techniques for predicting the critical moment, namely: linear buckling analysis, 

geometrically nonlinear analysis, and a linear buckling analysis with an iterative solution to 

account for prebuckling deformations. The study found that the linear buckling analysis does 

not provide accurate solutions, which is expected since it doesn’t account for prebuckling 

effects, and the nonlinear and iterative linear solutions provide more accurate critical moment 

predictions, with the iterative linear solution being far less demanding computationally. It is to 

mention that although the paper says that the “iterative LTB analysis method is newly 

proposed”, a similar method was proposed earlier in [76, 82]. 

The main observations from the literature can be summarized as follows. 

 The vast majority of research considers simply supported beams with forked supports. 

Cantilever beams and clamped beams occur in a few papers, but other support 

conditions are not discussed at all. 

 There seems to be a consensus that the prebuckling deflection has a positive effect on 

LTB, i.e., the prebuckling deflection increases the critical moment. Moreover, there is 
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an agreement that the increase is primarily influenced by the ratio of the weak to strong 

axis moments of inertias.  

 Most of the papers agree that the increase due to prebuckling deflections can 

approximately be expressed by the 1/√1 − 𝐼𝑦/𝐼𝑥  factor. More precise formulae are 

given in several papers, and there are small discrepancies between these formulae. In a 

few papers, it is suggested that the available formula underestimates the critical moment. 

 In most of the papers, it is implicitly assumed or explicitly stated that the provided 

formula to consider the prebuckling effect is generally valid. There is one single paper 

in which it is suggested that the critical moment increase is affected by the supports.  

 The discrepancies between the papers are not limited to differences between the 

provided closed-form solutions for the critical moment with prebuckling effect, 

differences can also be observed in the underlying basic mechanical-mathematical 

formulae. In certain papers, criticism can be found regarding the content of other papers. 

 Experimental work specifically devoted to the effect of prebuckling deflection is rather 

scarce; the existing experimental results are not convincing. 

 In the literature there is hardly any attempt to use general numerical methods such as 

the shell finite element method, to verify the analytical results or the developed specific 

numerical formulations.  

2.3 Analytical solution for the basic case 

2.3.1 General 

 Shape functions 

In this study, the energy method is used. The total potential is expressed in terms of 

displacements. Thus, the displacements have to be assumed. In case of LTB, the secondary 

displacements are the lateral translation and twisting rotation, 𝑢 and 𝜑. The shape functions 

must satisfy the boundary conditions. For example, in the case of forked supports, the assumed 

displacement functions are simple half sinewaves: 

𝑢(𝑧) = 𝑢𝑚𝑠𝑖𝑛
𝜋𝑧

𝐿
 

𝜑(𝑧) = 𝜑𝑚𝑠𝑖𝑛
𝜋𝑧

𝐿
 

(9) 
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where 𝑢𝑚 and 𝜑𝑚 are the displacement amplitudes, and 𝐿 is the beam length, see Fig. 

2.1. (Further classic support cases will be considered in Section 2.4). 

The primary (prebuckling) displacement is the in-plane deflection due to loading. 

Although it is not included in the energy method solution, it has an influence on the strains and 

curvatures, which influence is disregarded in classic LTB solutions. The primary displacements 

can be expressed by classic equations of the strength of materials. For example, in the basic 

case the beam is simply supported at both ends and subjected to uniform moment along the 

length, accordingly, the primary displacement of the beam’s system line can be described by a 

quadratic function: 

𝑣(𝑧) =
𝑣𝑚4𝑧(𝐿 − 𝑧)

𝐿2
  with  𝑣𝑚 =

𝑀𝑥𝐿
2

8𝐸𝐼𝑥
 (10) 

where 𝑣𝑚 is the maximum vertical displacement, and 𝑀𝑥 is the applied uniform bending 

moment. 

 

Figure 2.1: Coordinate system, displacements. 

 Total potential 

The total potential (𝛱) is expressed as the sum the strain energy (S) and the work (W) of 

the stresses on the nonlinear strains.  

𝛱 = 𝑆 + 𝑊 (11) 

where 

𝑊 = ∫∫ 𝜀𝑧

𝑀𝑥

𝐼𝑥
𝑦𝑑𝐴

𝐴

𝐿

0

𝑑𝑧 (12) 
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𝑆 =
1

2
∫∫ (𝐸𝐼𝑦𝜅𝑦

2 + 𝐸𝐼𝑤𝜅𝑧𝑑
2 + 𝐺𝐽𝜅𝑧

2)𝑑𝐴
𝐴

𝐿

0

𝑑𝑧 (13) 

In the strain energy expression, 𝜅𝑦 is the curvature in the lateral direction, (i.e., the rate 

of change of the tangent of the system line in the lateral direction,) 𝜅𝑧 is the rate of change of 

the twist angle, and 𝜅𝑧𝑑 is the rate of change of 𝜅𝑧. In the work expression, 𝑀𝑥 is the applied 

moment, 𝜀𝑧  is the nonlinear longitudinal normal strain due to displacements. Both the 𝜀𝑧 

longitudinal strain and the 𝜅 curvatures must be expressed on the deformed geometry, which 

requires the transformation between the deformed and undeformed coordinate systems. In the 

relevant literature, multiple solutions can be found, as will be discussed later.  

 Curvatures 

The 𝑇𝑅 rotation matrix can be obtained by the 𝑢, 𝑣 and 𝜑 displacement functions, and 

once obtained, the curvatures (on the deformed geometry of the beam) can be expressed. The 

expressions are, see [60-64]: 

𝜅𝑥 = 𝑙𝑧
𝑑𝑙𝑦

𝑑𝑠
+ 𝑚𝑧

𝑑𝑚𝑦

𝑑𝑠
+ 𝑛𝑧

𝑑𝑛𝑦

𝑑𝑠
 

𝜅𝑦 = 𝑙𝑥
𝑑𝑙𝑧
𝑑𝑠

+ 𝑚𝑥

𝑑𝑚𝑧

𝑑𝑠
+ 𝑛𝑥

𝑑𝑛𝑧

𝑑𝑠
 

𝜅𝑧 = 𝑙𝑦
𝑑𝑙𝑥
𝑑𝑠

+ 𝑚𝑦

𝑑𝑚𝑥

𝑑𝑠
+ 𝑛𝑦

𝑑𝑛𝑥

𝑑𝑠
 

(14) 

where the elements of 𝑇𝑅 are direction cosines: 

𝑇𝑅 = [

𝑙𝑥 𝑙𝑦 𝑙𝑧
𝑚𝑥 𝑚𝑦 𝑚𝑧

𝑛𝑥 𝑛𝑦 𝑛𝑧

] (15) 

The derivation with respect to length ‘s’ can be approximated by the derivation with 

respect to the longitudinal coordinate ‘z’. It is also to note that the actual expressions for the 

curvatures are fairly long, and approximations are necessary, as will be discussed later.  

 Longitudinal normal strain 

To calculate the work of the loads/stresses, strains are needed. Assuming that there are 

longitudinal stresses only (as usual in any beam-model-based solution), only the longitudinal 

normal strain is needed, which is derived from the translations. According to the Green-

Lagrange starin tensor, the strain can be expressed as:  
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𝜀𝑧 =
𝜕𝑤𝑥𝑦

𝜕𝑧
+

1

2
((

𝜕𝑢𝑥𝑦

𝜕𝑧
)

2

+ (
𝜕𝑣𝑥𝑦

𝜕𝑧
)

2

+ (
𝜕𝑤𝑥𝑦

𝜕𝑧
)

2

) (16) 

where 𝑢𝑥𝑦, 𝑣𝑥𝑦, and 𝑤𝑥𝑦 are the translation at an arbitrary cross-section point. As it is 

typical in classic buckling solutions, the (𝜕𝑤𝑥𝑦 𝜕𝑧⁄ )
2

 nonlinear term is neglected. All 

translations must be interpreted on the deflected geometry. According to e.g., [63], the 

translations of an arbitrary cross-section point (at the 𝑥, 𝑦 position, with sectoral coordinate 𝜔) 

can be expressed as: 

[

𝑢𝑥𝑦

𝑣𝑥𝑦

𝑤𝑥𝑦

] = [
𝑢
𝑣
𝑤

] + 𝑇𝑅 [

𝑥
𝑦

−𝜔𝜅𝑧

] − [
𝑥
𝑦
0
] (17) 

where 𝑢, 𝑣, and 𝑤 are the translations at the centroid (and due to double symmetry, the 

shear center and centroid coincide). 𝑇𝑅 is substituted into Eq.  (17) to calculate 𝑢𝑥𝑦, 𝑣𝑥𝑦, and 

𝑤𝑥𝑦 , then they are substituted into the strain expression Eq. (16). Without further 

simplifications, the final formula is extremely long (with many dozens of terms). However, 

many of these terms are zero if the cross-section is doubly-symmetric, due to the fact that 𝑦 is 

measured from the centroid. As a result, the integral of all the terms in 𝜀𝑧 that are independent 

of 𝑦 or contain 𝑦2 are equal to zero. In other words, only the terms that are linearly dependent 

on 𝑦 are necessary to consider. With this, the expression for 𝜀𝑧 is greatly simplified, but still 

might be long, hence, some approximations might be reasonable. 

 Equation system, critical load 

The expressions for the curvatures and longitudinal strain can be substituted into the 

total potential formula. After the integrations, the total potential is expressed in terms of the 

displacement parameters, i.e., the displacement amplitudes 𝑢𝑚  and 𝜑𝑚. Note, 𝑣𝑚  is not an 

independent displacement parameter, since it is defined by 𝑀𝑥, see Eq. (10). According to the 

theorem of stationarity of total potential, equilibrium exists if the total potential is stationary, 

i.e.: 

𝜕𝛱

𝜕𝑢𝑚
= 0   

𝜕𝛱

𝜕𝜑𝑚
= 0 (18) 

The above expressions form a system of two equations. Applying certain simplifications 

(which will be discussed later), the equations are linear, and can be written in matrix format as: 

[𝑪] [
𝑢𝑚

𝜑𝑚
] = 0 (19) 
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where 𝑪 is a 2×2 coefficient matrix dependent on 𝑀𝑥 . A nontrivial solution of the 

homogeneous system of linear equation exists if the coefficient matrix is singular, i.e., its 

determinant equals to zero.  

det(𝑪) = 0    (20) 

This condition can be satisfied if 𝑀𝑥 takes specific value(s), which is (are) the critical 

moment(s) 𝑀𝑐𝑟. To be able to solve the det(𝑪) = 0 equation, further approximations might be 

necessary, as discussed in the following Section. 

2.3.2 Variants and approximations in the derivation 

 Transformation matrix 

Using the rotational angles 𝛼 , 𝛽  and 𝜑  about the 𝑥 , 𝑦  and 𝑧  axis, respectively, the 

rotation matrix can be expressed. If the rotations are large and no approximations are 

introduced, it is relatively easy to define the transformation matrix by the sines and cosines of 

the rotational angles; in this case, however, the order of how the rotations around the three axes 

occur matters. On the other hand, if the rotations are (very) small, the cosines can be taken as 

1, and the sines can be approximated by the value of the angle; leading to the 𝑇𝑅 transformation 

matrix being simple and independent of the order of the rotations. However, to solve the LTB 

problem with prebuckling deflections, moderately large rotations must be assumed. Essentially, 

the sine and cosine of an angle are approximated using the Taylor series expansion up to 

quadratic terms.  

There are two ways in the relevant papers to express the transformation matrix. In [60], 

it can be understood that the rotations around 𝑥, 𝑦 and 𝑧 are applied one by one, then the sine 

and cosine terms are approximated by Taylor series, and in the transformation matrix, the linear 

terms and some quadratic terms are kept. Regarding the quadratic terms, the approximation is 

based on the logic that the secondary displacements are infinitesimally small (hence 𝛽 and 𝜑 

are small), but the primary displacement is moderately large (hence 𝛼 is moderately large). 

Accordingly, only the quadratic terms associated with 𝛼 are kept. The resulting transformation 

matrix is as follows: 

𝑇𝑅,𝑎𝑛𝑔𝑙𝑒
𝑉𝑎 =

[
 
 
 
 

1 −𝜑 𝛽

𝜑 + 𝛼𝛽 1 −
1

2
𝛼2 −𝛼

−𝛽 + 𝛼𝜑 𝛼 1 −
1

2
𝛼2

]
 
 
 
 

 (21) 
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Papers [63] and [66] present a different version of 𝑇𝑅. Though [63] and [66] use different 

mathematical apparatus, the same transformation matrix is derived when expressed by the 

angles, as follows: 

𝑇𝑅,𝑎𝑛𝑔𝑙𝑒
𝑃𝑖 =

[
 
 
 
 
 1 −

1

2
𝛽2 −

1

2
𝜑2 −𝜑 +

1

2
𝛼𝛽 𝛽 +

1

2
𝛼𝜑

𝜑 +
1

2
𝛼𝛽 1 −

1

2
𝛼2 −

1

2
𝜑2 −𝛼 +

1

2
𝛽𝜑

−𝛽 +
1

2
𝛼𝜑 𝛼 +

1

2
𝛽𝜑 1 −

1

2
𝛼2 −

1

2
𝛽2

]
 
 
 
 
 

 (22) 

The rotation angles must be expressed using the displacement functions. The angle about 

the longitudinal axis is directly given by the 𝜑 function. For 𝛼 and 𝛽, there are two alternatives 

in the literature. The simplest approximation, used in [60], is: 

𝛼 = −
𝑑𝑣

𝑑𝑧
= −𝑣′ 

𝛽 =
𝑑𝑢

𝑑𝑧
= 𝑢′ 

(23) 

In [15] and [18], however, 𝛼 and 𝛽 are approximated more accurately as:  

𝛼 = −
𝑑𝑣

𝑑𝑧
+

1

2
𝜑

𝑑𝑢

𝑑𝑧
= −𝑣′ +

1

2
𝜑𝑢′ 

𝛽 =
𝑑𝑢

𝑑𝑧
+ 𝜑

𝑑𝑣

𝑑𝑧
= 𝑢′ +

1

2
𝜑𝑣′ 

(24) 

To obtain the necessary transformation matrix, Eq. (23) or Eq. (24) must be substituted 

into either Eq. (21) or Eq. (22). In [60], Eq. (23) is substituted into Eq. (21) which leads to a 

transformation matrix as follows: 

𝑇𝑅
𝑉𝑎 =

[
 
 
 
 

1 −𝜑 𝑢′

𝜑 − 𝑢′𝑣′ 1 −
1

2
(𝑣′)2 𝑣′

−𝑢′ − 𝑣′𝜑 −𝑣′ 1 −
1

2
(𝑣′)2

]
 
 
 
 

 (25) 

However, if Eq. (24) is substituted into Eq. (22), it leads to a transformation matrix with 

entries up to 4th-order terms, and it is reasonable to introduce approximations. If the 4th-order 

terms are eliminated, the resulting matrix is as follows: 
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𝑇𝑅
3𝑟𝑑

=

[
 
 
 
 
 1 −

1

2
(𝑢′)2 −

1

2
𝜑2 −

1

2
𝑢′𝑣′𝜑 −𝜑 −

1

2
𝑢′𝑣′ +

1

4
(𝑢′)2𝜑 −

1

4
(𝑣′)2𝜑 𝑢′ +

1

4
𝑢′𝜑2

𝜑 −
1

2
𝑢′𝑣′ +

1

4
(𝑢′)2𝜑 −

1

4
(𝑣′)2𝜑 1 −

1

2
(𝑣′)2 −

1

2
𝜑2 +

1

2
𝑢′𝑣′𝜑 𝑣′ +

1

4
𝑣′𝜑2

−𝑢′ − 𝑣′𝜑 +
1

4
𝑢′𝜑2 −𝑣′ + 𝑢′𝜑 +

1

4
𝑣′𝜑2 1 −

1

2
(𝑢′)2 −

1

2
(𝑣′)2

]
 
 
 
 
 

 
(26) 

In [66], the transformation matrix is essentially similar to Eq (26), but some 3rd-order 

terms are eliminated, namely from entries (1,3) and (2,3). The resulting matrix is then: 

𝑇𝑅
𝑇𝑜

=

[
 
 
 
 
 1 −

1

2
(𝑢′)2 −

1

2
𝜑2 −

1

2
𝑢′𝑣′𝜑 −𝜑 −

1

2
𝑢′𝑣′ +

1

4
(𝑢′)2𝜑 −

1

4
(𝑣′)2𝜑 𝑢′

𝜑 −
1

2
𝑢′𝑣′ +

1

4
(𝑢′)2𝜑 −

1

4
(𝑣′)2𝜑 1 −

1

2
(𝑣′)2 −

1

2
𝜑2 +

1

2
𝑢′𝑣′𝜑 𝑣′

−𝑢′ − 𝑣′𝜑 +
1

4
𝑢′𝜑2 −𝑣′ + 𝑢′𝜑 +

1

4
𝑣′𝜑2 1 −

1

2
(𝑢′)2 −

1

2
(𝑣′)2

]
 
 
 
 
 

 
(27) 

In [63], the transformation matrix is similar to Eq. (26) or Eq. (27), but further simplified 

as:  

𝑇𝑅
𝑃𝑖

=

[
 
 
 
 
 1 −

1

2
(𝑢′)2 −

1

2
𝜑2 −

1

2
𝑢′𝑣′𝜑 −𝜑 −

1

2
𝑢′𝑣′ +

1

2
(𝑢′)2𝜑 𝑢′

𝜑 −
1

2
𝑢′𝑣′ −

1

2
(𝑣′)2𝜑 1 −

1

2
(𝑣′)2 −

1

2
𝜑2 +

1

2
𝑢′𝑣′𝜑 𝑣′

−𝑢′ − 𝑣′𝜑 +
1

2
𝑢′𝜑2 −𝑣′ + 𝑢′𝜑 +

1

2
𝑣′𝜑2 1 −

1

2
(𝑢′)2 −

1

2
(𝑣′)2

]
 
 
 
 
 

 
(28) 

It can be noticed that the 3rd-order terms are eliminated from (1,3) and (2,3), plus, the 

entries (1,2) and (3,2) are modified. This modification is not mentioned, hence not commented 

in the paper. 

Several further variants of the matrix could be defined, depending on what terms are 

eliminated or kept. Since it is a widely used engineering approximation to eliminate all the 3rd-

order terms, the second-order approximation is provided here as follows: 

𝑇𝑅
2𝑛𝑑 =

[
 
 
 
 
 1 −

1

2
(𝑢′)2 −

1

2
𝜑2 −𝜑 −

1

2
𝑢′𝑣′ 𝑢′

𝜑 −
1

2
𝑢′𝑣′ 1 −

1

2
(𝑣′)2 −

1

2
𝜑2 𝑣′

−𝑢′ − 𝑣′𝜑 −𝑣′ + 𝑢′𝜑 1 −
1

2
(𝑢′)2 −

1

2
(𝑣′)2

]
 
 
 
 
 

 (29) 

 Curvatures 

Using one of the above transformation matrices and considering Eqs. (14-15), the 

curvatures can be expressed in terms of the displacement functions. The obtained formulae are 

long. For example, using 𝑇𝑅
𝑃𝑖, the curvature formulae have 9, 7 and 11 terms for 𝜅𝑥, 𝜅𝑦, and 𝜅𝑧, 

respectively. Most of the terms are higher-order. If the linear and quadratic terms are kept, the 
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curvatures are expressed (from almost any of the above-mentioned variants, with the exception 

of 𝑇𝑅
𝑉𝑎) as follows: 

𝜅𝑥 = −𝑣′′ + 𝜑𝑢′′ 

𝜅𝑦 = 𝑢′′ + 𝜑𝑣′′ 

𝜅𝑧
𝑔𝑒𝑛

= 𝜑′ −
1

2
𝑢′𝑣′′ +

1

2
𝑢′′𝑣′ 

(30) 

On the other hand, the 𝜅𝑧 curvature obtained from 𝑇𝑅
𝑉𝑎 is slightly different: 

𝜅𝑧
𝑉𝑎 = 𝜑′ − 𝑢′𝑣′′ (31) 

It is to note that in [61-62], another equation is used for 𝜅𝑧 (derived differently, not 

directly from a transformation matrix) as follows: 

𝜅𝑧
𝑅𝑜 = 𝜑′ − 𝑢′𝑣′′ + 𝑢′′𝑣′ (32) 

It is to observe that there is agreement in the literature on how to express 𝜅𝑦, while 

various variants for 𝜅𝑧 exist. In  𝜅𝑥, the 2nd-order term is sometimes eliminated, however, this 

has no effect on the critical moment formula, since 𝜅𝑥  is not directly employed in the 

derivations. 

 Longitudinal strain 

Following the steps described in Section 2.3.1.4, the longitudinal normal strain is 

expressed through the displacements of the beam’s system line. The actual expression depends 

on the considered rotation matrix, but typically has one first-order term, one second-order term, 

several third-order terms, and several fourth-order terms. According to the logic of the linear 

buckling analysis, the first-order term should be disregarded. It might also be reasonable to 

neglect the fourth-order terms. With these eliminations, there is a second-order term and some 

third-order terms. A few possible expressions are given here, as follows. 

From 𝑇𝑅
2𝑛𝑑: 

𝜀𝑧
2𝑛𝑑 = (𝜑𝑢′′ − 𝜑𝜑′𝑣′ −

1

2
(𝑢′)2𝑣′′ − (𝑣′)2𝑣′′ −

1

2
𝑢′𝑢′′𝑣′) 𝑦 (33) 

From 𝑇𝑅
3𝑟𝑑 or 𝑇𝑅

𝑇𝑜: 

𝜀𝑧
3𝑟𝑑 = (𝜑𝑢′′ +

1

4
𝜑2𝑣′′ −

1

2
(𝑢′)2𝑣′′ − (𝑣′)2𝑣′′ −

1

2
𝜑𝜑′𝑣′ −

1

2
𝑢′𝑢′′𝑣′) 𝑦 (34) 

From 𝑇𝑅
𝑃𝑖: 
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𝜀𝑧
𝑃𝑖 = (𝜑𝑢′′ +

1

2
𝜑2𝑣′′ −

1

2
(𝑢′)2𝑣′′ − (𝑣′)2𝑣′′ −

1

2
𝑢′𝑢′′𝑣′) 𝑦 (35) 

In [61-63], 𝜀𝑧
𝑃𝑖  is further simplified by keeping one single 3rd-order term only, as 

follows. 

𝜀𝑧
𝑃𝑖,𝑠𝑖𝑚𝑝𝑙𝑒 = (𝜑𝑢′′ +

1

2
𝜑2𝑣′′) 𝑦 (36) 

From 𝑇𝑅
3𝑟𝑑 or 𝑇𝑅

𝑇𝑜,  but with keeping only one 3rd-order term similarly to the previous 

case: 

𝜀𝑧
3𝑟𝑑,𝑠𝑖𝑚𝑝𝑙𝑒 = (𝜑𝑢′′ +

1

4
𝜑2𝑣′′) 𝑦 (37) 

From any 𝑇𝑅 , if only the single second-order term is kept: 

𝜀𝑧
2𝑛𝑑,𝑠𝑖𝑚𝑝𝑙𝑒 = (𝜑𝑢′′)𝑦 (38) 

 Approximations due to cross-section characteristics 

If the cross-section is open, it is reasonable to introduce approximations (which will be 

referred to as ’open‘) as follows: 

(
𝐸𝐼𝑤/𝐿2

𝐸𝐼𝑥
)

2

≅ 0    (
𝐺𝐽

𝐸𝐼𝑥
)
2

≅ 0     
𝐺𝐽(𝐸𝐼𝑤/𝐿2)

(𝐸𝐼𝑥)2
≅ 0 (39) 

The formulae can be further simplified (which option will be referred to as ‘open-

simple‘) assuming that:  

𝐸𝐼𝑤/𝐿2

𝐸𝐼𝑥
≅ 0   

𝐺𝐽

𝐸𝐼𝑥
≅ 0 (40) 

If the cross-section is closed, the warping is negligible, but the Saint-Venant torsion 

rigidity is significant, hence the following approximation might be used (referred to as option 

‘closed’): 

𝐸𝐼𝑤/𝐿2

𝐸𝐼𝑥
≅ 0 (41) 

The formulae can further be simplified (resulting in option ’closed-simple‘) assuming 

that:  

𝐸𝐼𝑤/𝐿2

𝐸𝐼𝑥
≅ 0     (

𝐺𝐽

𝐸𝐼𝑥
)
2

≅ 0   (42) 
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 Optional reduction of equation degree 

Even if the above-discussed approximations are introduced, the final equation, i.e., Eq. 

(20), from which the critical moment can be calculated, is of 4th-degree. Since there is no cubic 

term in the equation, it can still be solved, and a closed-form expression (even if long) can be 

obtained for 𝑀𝑐𝑟. However, in the literature the higher-degree terms are always eliminated and 

finally the critical moment is calculated from a simplified quadratic equation.  

2.4 Critical moment variants 

2.4.1 Open sections 

The derivation of the critical moment can be completed as summarized in Section 2.3.1, 

but the final result (e.g., final expression for the critical moment) is dependent on various 

details. The determining factors are as follows: the 𝑇𝑅, the curvatures, the longitudinal strain, 

the assumed stiffness ratios of the cross-section, and the potential elimination of higher-degree 

𝑀𝑐𝑟 terms in the final equation. 

The elements of 𝑇𝑅   matrix are combined from the displacement functions and their 

derivatives. The curvatures and the longitudinal normal strain are also expressed by the 

combination of the displacement functions and their derivatives. In most structural engineering 

stability problems, when displacement functions and/or derivatives are combined, it is 

appropriate to eliminate cubic or higher-order terms.  

However, the literature suggests that to have the critical moment with prebuckling 

deflections, third-order terms are required, too, in the 𝑇𝑅 transformation matrix, and in the 𝜀𝑧 

strain, but it is not clear which cubic terms are necessary. Moreover, in the literature, I-shaped 

and (narrow) rectangular sections are discussed, and some stiffness values are assumed to be 

small (compared to others), but – in many cases – without introducing a consistent assumption 

system. Closed sections with high torsional rigidity (e.g., RHS) are not discussed, therefore, it 

remains unknown how the assumed stiffness ratios affect the results. 

Finally, the 𝑀𝑐𝑟 formulae in the literature are solutions of quadratic equations. However, 

this is possible only if the higher-degree 𝑀𝑐𝑟 terms are eliminated. It is questionable whether 

the effect of this simplification can always be justified. The solution for 𝑀𝑐𝑟 is, therefore, very 

far from being unambiguous; this explains why various formulae are found in various papers. 

Actually, several dozens of different 𝑀𝑐𝑟 formulae could be derived. A few possible formulae 

are presented here, to demonstrate which options lead to the formulae found in the literature, 
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and how the details of the derivations influence the final results. First, open cross-sections are 

considered, therefore ‘open‘ and ’open-simple‘ options are employed. The considered 

derivation variants are summarized in Table 2.1. 

Variant (ref) is the reproduction of the simplest formula, shown in several papers, e.g.,  

[2,67,69,71,75], which will be used here as a reference. Variant (a) is the reproduction of the 

Pi-Trahair formula as in [64]. Variant (b) is the reproduction of the formula in [60] and [62]. 

Variant (c) is obtained by applying the geometric approximations proposed by [66]. Variant (d) 

is similar to (c), but the simplified formula is employed for the longitudinal strain (similarly to 

the simplified longitudinal strain formula by Pi-Trahair). Variant (e) is obtained by a consistent 

quadratic approximation in each step (i.e., eliminating the cubic terms systematically). The 

variants denoted by (+) are included here in order to observe the influence of neglecting or 

considering the 4th-degree term in the final equation. Accordingly, variant (a+) is similar to (a), 

but the final equation is 4th-degree, and variant (c+) is similar to (c), but the final equation is 

4th-degre. It is to note that in the case of variants (a+) and (c+), 𝑀𝑐𝑟 is calculated from a 4-th-

degree equation; the obtained formulae can be expressed in closed format, but they are 

relatively long, thus, not presented here.  

Table 2.1: Summary of options considered for DSI sections 

vari-ant transf. matrix curvatures nonlinear 

longit. strain 

cross-section 

model 

final  

equation 

Eq.  

(ref) 𝑇𝑅
2𝑛𝑑 𝜅𝑦 and 𝜅𝑧

𝑔𝑒𝑛
 𝜀𝑧

𝑃𝑖,𝑠𝑖𝑚𝑝𝑙𝑒
 open simple quadratic (43) 

(a) 𝑇𝑅
𝑃𝑖 𝜅𝑦 and 𝜅𝑧

𝑔𝑒𝑛
 𝜀𝑧

𝑃𝑖,𝑠𝑖𝑚𝑝𝑙𝑒
 open quadratic (44) 

(b) no 𝑇𝑅 𝜅𝑦 and 𝜅𝑧
𝑅𝑜 𝜀𝑧

𝑃𝑖,𝑠𝑖𝑚𝑝𝑙𝑒
 open quadratic (45) 

(c) 𝑇𝑅
𝑇𝑜 or 𝑇𝑅

2𝑛𝑑 𝜅𝑦 and 𝜅𝑧
𝑔𝑒𝑛

 𝜀𝑧
3𝑟𝑑 open quadratic (46) 

(d) 𝑇𝑅
𝑇𝑜 𝜅𝑦 and 𝜅𝑧

𝑔𝑒𝑛
 𝜀𝑧

3𝑟𝑑,𝑠𝑖𝑚𝑝𝑙𝑒
 open quadratic (47) 

(e) 𝑇𝑅
2𝑛𝑑 𝜅𝑦 and 𝜅𝑧

𝑔𝑒𝑛
 𝜀𝑧

2𝑛𝑑,𝑠𝑖𝑚𝑝𝑙𝑒
 open quadratic (48) 

(a+) 𝑇𝑅
𝑃𝑖 𝜅𝑦 and 𝜅𝑧

𝑔𝑒𝑛
 𝜀𝑧

𝑃𝑖,𝑠𝑖𝑚𝑝𝑙𝑒
 open 4th-degree - 

(c+) 𝑇𝑅
𝑇𝑜 𝜅𝑦 and 𝜅𝑧

𝑔𝑒𝑛
 𝜀𝑧

3𝑟𝑑 open 4th-degree - 

 

The obtained formulae are as follows: 

𝑀𝑐𝑟
(𝑟𝑒𝑓)

= 𝑀𝑐𝑟0 √1 −
𝐸𝐼𝑦

𝐸𝐼𝑥
⁄ = 𝑀𝑐𝑟0 √1 −

𝐼𝑦

𝐼𝑥
⁄  (43) 
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𝑀𝑐𝑟
(𝑎)

= 𝑀𝑐𝑟0 √(1 −
𝐸𝐼𝑦

𝐸𝐼𝑥
−

𝐺𝐽

2𝐸𝐼𝑥
−

𝜋2𝐸𝐼𝑤
2𝐸𝐼𝑥𝐿2

+
𝐺𝐽𝐸𝐼𝑦

2(𝐸𝐼𝑥)2
+

𝜋2𝐸𝐼𝑤𝐸𝐼𝑦

2(𝐸𝐼𝑥)2𝐿2
)⁄  (44) 

𝑀𝑐𝑟
(𝑏)

= 𝑀𝑐𝑟0 √(1 −
𝐸𝐼𝑦

𝐸𝐼𝑥
−

𝐺𝐽

𝐸𝐼𝑥
−

𝜋2𝐸𝐼𝑤
𝐸𝐼𝑥𝐿2

+
𝐺𝐽𝐸𝐼𝑦
(𝐸𝐼𝑥)2

+
𝜋2𝐸𝐼𝑤𝐸𝐼𝑦
(𝐸𝐼𝑥)2𝐿2

)⁄  (45) 

𝑀𝑐𝑟
(𝑐)

= 𝑀𝑐𝑟0 √(1 −
𝐸𝐼𝑦

𝐸𝐼𝑥
−

2𝐺𝐽

𝐸𝐼𝑥
−

2𝜋2𝐸𝐼𝑤
𝐸𝐼𝑥𝐿2

+
𝐺𝐽𝐸𝐼𝑦

2(𝐸𝐼𝑥)2
+

𝜋2𝐸𝐼𝑤𝐸𝐼𝑦

2(𝐸𝐼𝑥)2𝐿2
)⁄  (46) 

𝑀𝑐𝑟
(𝑑)

= 𝑀𝑐𝑟0 √(1 −
3𝐸𝐼𝑦

2𝐸𝐼𝑥
−

𝐺𝐽

2𝐸𝐼𝑥
−

𝜋2𝐸𝐼𝑤
2𝐸𝐼𝑥𝐿2

+
𝐺𝐽𝐸𝐼𝑦

2(𝐸𝐼𝑥)2
+

𝜋2𝐸𝐼𝑤𝐸𝐼𝑦

2(𝐸𝐼𝑥)2𝐿2
)⁄  (47) 

𝑀𝑐𝑟
(𝑒)

= 𝑀𝑐𝑟0 √(1 −
2𝐸𝐼𝑦

𝐸𝐼𝑥
−

𝐺𝐽

2𝐸𝐼𝑥
−

𝜋2𝐸𝐼𝑤
2𝐸𝐼𝑥𝐿2

+
𝐺𝐽𝐸𝐼𝑦

2(𝐸𝐼𝑥)2
+

𝜋2𝐸𝐼𝑤𝐸𝐼𝑦

2(𝐸𝐼𝑥)2𝐿2
)⁄  (48) 

In all the above equations: 

𝑀𝑐𝑟0 =
𝜋

𝐿
√𝐸𝐼𝑦 (𝐺𝐽 +

𝜋2𝐸𝐼𝑤
𝐿2

) (49) 

It is obvious that the expressions for 𝑀𝑐𝑟 are dependent on the details of the derivation, 

leading to different 𝑀𝑐𝑟 formulae. To be able to evaluate the differences, a simple numerical 

study is provided (Fig. 2.2).  

 
Figure 2.2: Open sections: moment increase due to prebucking deflection. 

Obviously, the critical moment values are dependent on the cross-section properties, the 

beam length, and the material constants, however, here the focus is on the effect of the 
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derivation details, therefore, hypothetical cross-sections are used with assumed stiffness ratios.  

Considering typical doubly-symmetric I-shaped steel sections, it can be observed that 𝐺𝐽 𝐸𝐼𝑥⁄  

is around (or smaller) than 0.01. Also, 𝜋2𝐸𝐼𝑤/𝐿2 𝐸𝐼𝑥⁄  is around (or smaller) than 0.001. By 

assuming these rigidity ratios, the solution becomes independent of the length and material. The 

critical moment increase, i.e., the (𝑀𝑐𝑟 − 𝑀𝑐𝑟0)/𝑀𝑐𝑟0 values are plotted in Fig. 2.2 for various, 

practically relevant 𝐼𝑦/𝐼𝑥 ratios. 

Since for the given basic case of LTB, the solutions by [64], i.e., (a) and by [60], i.e., (b) 

are re-derived by various researchers, it is fair to assume that these solutions are reasonably 

correct. It can be observed that variant (c) results are very similar to those from (a) and (b). The 

numerical studies presented in the next chapter validate this conclusion, too. It is clear that the 

simplest, so-called reference formula yields nearly the same results. This means that it is 

reasonable to use ‘open-simple’ option in practical cases (at least in the basic case). Moreover, 

the results seem to justify the suggestion from various papers that the effect of prebuckling 

deflection can be accounted for by the 1/√1 − 𝐼𝑦/𝐼𝑥 factor. Mathematically, however, this is 

simply due to the fact that the 𝐸𝐼𝑤/𝐿2 𝐸𝐼𝑥⁄  and 𝐺𝐽 𝐸𝐼𝑥⁄  rigidity ratios are small for practical I-

shaped steel sections. 

It is clear from the 𝑀𝑐𝑟 formulae that no real root exists if 𝐼𝑦/𝐼𝑥 is large in any variant. 

In most variants, the 𝐼𝑦/𝐼𝑥 = 1 is the point of singularity; while in variants (d) and (e), the 

singularity occurs for much smaller value of 𝐼𝑦/𝐼𝑥. Moreover, for medium 𝐼𝑦/𝐼𝑥 values, variant 

(d) and (e) lead to results very different from any other variants.  Therefore, variant (d) and (e) 

can be judged as incorrect. The results suggest that in these options, some important terms are 

missing from the displacement approximations, leading to poor approximation(s) of the 

function(s), which finally leads to poor prediction for the critical moment. It can be also 

observed that the 4th-degree moment term in the final equation has very little effect. This is 

particularly true when comparing (a) and (a+); though the 𝑀𝑐𝑟  values are not equal, the 

difference is extremely small. 

2.4.2 Closed sections 

Unlike in open sections, the torsion rigidity is significant in closed sections, and this has 

an effect on the 𝑀𝑐𝑟 formulae. Two of the above-mentioned variants are therefore re-calculated, 

using ‘closed‘ and ’closed-simple‘ cross-section approximations. Namely: variant (a) and 

variant (c) are considered, (a1) and (c1) being the simplified, (a2) and (c2) being the more 
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complex ones. Moreover, the effect of eliminating the 4th-degree term in the final equation is 

illustrated in variants (a1) and (c1): if the 4th-degree term is kept, the resulting variants are 

identified as (a1+) and (c1+), respectively. The characteristics of the variants are summarized 

in Table 2.2. 

Table 2.2: Summary of options considered for RHS sections 

vari-ant transf. matrix curvatures nonlinear longit. 

strain 

cross-section 

model 

final  

equation 

Eq. 

(a1) 𝑇𝑅
𝑃𝑖 𝜅𝑦 and 𝜅𝑧

𝑔𝑒𝑛
 𝜀𝑧

𝑃𝑖,𝑠𝑖𝑚𝑝𝑙𝑒
 closed-simple quadratic (50) 

(a2) 𝑇𝑅
𝑃𝑖 𝜅𝑦 and 𝜅𝑧

𝑔𝑒𝑛
 𝜀𝑧

𝑃𝑖,𝑠𝑖𝑚𝑝𝑙𝑒
 closed quadratic (51) 

(c1) 𝑇𝑅
𝑇𝑜 or 𝑇𝑅

2𝑛𝑑 𝜅𝑦 and 𝜅𝑧
𝑔𝑒𝑛

 𝜀𝑧
3𝑟𝑑 or 𝜀𝑧

2𝑛𝑑 closed-simple quadratic (52) 

(c2) 𝑇𝑅
𝑇𝑜 or 𝑇𝑅

2𝑛𝑑 𝜅𝑦 and 𝜅𝑧
𝑔𝑒𝑛

 𝜀𝑧
3𝑟𝑑 or 𝜀𝑧

2𝑛𝑑 closed quadratic (53) 

(a1+) 𝑇𝑅
𝑃𝑖 𝜅𝑦 and 𝜅𝑧

𝑔𝑒𝑛
 𝜀𝑧

𝑃𝑖,𝑠𝑖𝑚𝑝𝑙𝑒
 closed-simple 4th-degree - 

(c1+) 𝑇𝑅
𝑇𝑜 or 𝑇𝑅

2𝑛𝑑 𝜅𝑦 and 𝜅𝑧
𝑔𝑒𝑛

 𝜀𝑧
3𝑟𝑑 or 𝜀𝑧

2𝑛𝑑 closed-simple 4th-degree - 

The obtained formulae are summarized as follows: 

𝑀𝑐𝑟
(𝑎1)

= 𝑀𝑐𝑟0 √1 −
𝐸𝐼𝑦
𝐸𝐼𝑥

−
𝐺𝐽

2𝐸𝐼𝑥
+

𝐸𝐼𝑦𝐺𝐽

2(𝐸𝐼𝑥)
2

⁄ = 𝑀𝑐𝑟0 √(1 −
𝐸𝐼𝑦
𝐸𝐼𝑥

) (1 −
𝐺𝐽

2𝐸𝐼𝑥
)⁄  (50) 

𝑀𝑐𝑟
(𝑎2)

= 𝑀𝑐𝑟0 √1 −
𝐸𝐼𝑦

𝐸𝐼𝑥
−

𝐺𝐽

2𝐸𝐼𝑥
+

𝐸𝐼𝑦𝐺𝐽

2(𝐸𝐼𝑥)2
+

9(𝐺𝐽)2

48(𝐸𝐼𝑥)2
−

𝜋2(𝐺𝐽)2

48(𝐸𝐼𝑥)2
⁄  (51) 

𝑀𝑐𝑟
(𝑐1)

= 𝑀𝑐𝑟0 √1 −
𝐸𝐼𝑦

𝐸𝐼𝑥
−

2𝐺𝐽

𝐸𝐼𝑥
+

𝐸𝐼𝑦𝐺𝐽

2(𝐸𝐼𝑥)2
⁄  (52) 

𝑀𝑐𝑟
(𝑐2)

= 𝑀𝑐𝑟0 √1 −
𝐸𝐼𝑦

𝐸𝐼𝑥
−

2𝐺𝐽

𝐸𝐼𝑥
+

𝐸𝐼𝑦𝐺𝐽

2(𝐸𝐼𝑥)2
+

9(𝐺𝐽)2

48(𝐸𝐼𝑥)2
−

𝜋2(𝐺𝐽)2

48(𝐸𝐼𝑥)2
⁄  (53) 

Fig. 2.3 shows that the effect of 𝐺𝐽 is non-negligible in the case of closed sections; in 

fact, it increases the 𝑀𝑐𝑟/𝑀𝑐𝑟0 ratio. However, usually, the higher-degree terms with 𝐺𝐽 have 

very small effect. Though variants (a) and (c) have been found to be very similar for open cross-

sections, they lead to rather different 𝑀𝑐𝑟/𝑀𝑐𝑟0 ratios for closed sections, particularly if the 

final equation is quadratic. The 4th-degree moment term in the final equation has noticeable 

effect; in variant (a) the effect is relatively small, but in variant (c) it seems to be absolutely 

necessary to keep the 4th-degree moment term, otherwise the results look unrealistic.  
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Figure 2.3: Closed sections: moment increase due to prebucking deflection. 

2.5 Summary 

In this chapter, analytical solutions for the lateral-torsional buckling of thin-walled 

beams, considering the effect of prebuckling deformations, were discussed. Doubly symmetric 

beams with various end supports, as well as cross sections with low and high torsional rigidities 

were considered. The critical moment formulae proposed in earlier papers for simply supported 

beams subjected to uniform moment were re-derived, identifying the important decision points 

which can/will influence the final formula.  

In the analytical derivations, the transformation of displacements is necessary due to the 

3D rotations of the system line of the beam. Since the rotations are not necessarily small, the 

transformation can be realized in multiple ways. Moreover, in the course of the derivations, 

many higher-order terms show up, and some of them are important, while others are not. It is 

not self-evident which terms should be kept and which terms can be eliminated; earlier papers 

show a significant scatter in this regard. Moreover, in certain publications some inconsistencies 

can be found. All these factors lead to variations in the end results. 

Both the derivations presented in this chapter and the in-depth study of the literature 

suggest that approximations should be done carefully since they might lead to erroneous results 

if done improperly. The results suggest that in the curvatures, up to second-order terms are 

necessary and enough to consider. In the longitudinal normal strain, however, 3rd-order terms 

are necessary too. It might be enough to consider selected 3rd-order term(s), but they need to be 

carefully selected. Regarding the transformation matrix, though in certain cases it is enough to 
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consider the second-order terms only, but in other cases higher-order terms are necessary, too; 

therefore, considering the 3rd-order terms is recommended. 

In the following chapters, further analytical derivations are performed for other cases 

(different end supports and intermediate supports), the approximations done by Pi-Trahair 

[63,64] are employed for these derivations since it was found in this chapter that they lead to 

reasonable results for the cases included in the scope of this study.



 

Chapter 3: Effect of End Supports 

3.1 Overview 

In the previous chapter, a detailed literature review is provided, which revealed that (i) 

there are some contradictory statements and suggestions in the literature; (ii) the effect of end 

supports is hardly considered; and (iii) there was hardly any attempt to use general finite 

element tools to investigate the prebuckling effect on LTB. Later in Chapter 2, the 

contradictions were addressed, and a detailed overview of the analytical derivations, as well as 

the various resulting formulae is given. In this chapter, the investigation is expanded to include 

other end support conditions, as well as numerical methods.  

Nowadays, numerical methods are widely used in the engineering practice and research. 

The most typical method is the finite element method (FEM). In this chapter, the FEM is used, 

with both beam and shell FEM elements. If the problem is idealized, by assuming elastic 

behavior without imperfections, the analysis is then called linear buckling analysis (LBA). In 

the case of LTB, the critical load is usually expressed as the critical moment, which is the topic 

of discussion here. Another commonly used approach for the buckling analysis is the previously 

mentioned GNIA (see Chapter 1), which will also be used in this chapter.  

Analytical considerations suggest that the maximum load from GNIA, if the 

imperfection is very small, converges to the critical load from LBA [45,80]. However, when 

GNIA is performed numerically, discrepancies are experienced, e.g., the moment where 

instability occurs can be smaller or larger than the critical moment from LBA [44]. One of the 

potential reasons of these discrepancies is the so-called prebuckling deflections, which is the 

main focus in this investigation.  

In Section 3.2, the scope of the study is discussed, showing the parameters considered 

in the study. In Section 3.3, the analytical derivations from Chapter 2 are expanded to include 

other boundary conditions, and several critical moment formulae are provided. In section 3.4, 

the numerical methods (LBA and GNIA), as well as the FEM models are discussed. The results 

from the various methods are presented and discussed in section 3.5. Though in general, the 

numerical and analytical results show reasonable coincidence, some differences are 

experienced, which are discussed in Section 3.6 and 3.7. Section 3.6 discusses the effect of the 

length of the beam, and section 3.7 discusses the localized deformations. 
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3.2 Scope 

In this study, single-span girders are analyzed with doubly symmetric steel cross-

sections. The girder (Fig. 3.1) is prismatic and originally straight. The beam is subjected to 

uniform moment about the major axis, and various boundary conditions have been considered. 

The critical moments without and with considering the in-plane deflections have been 

calculated (leading to 𝑀𝑐𝑟0  and 𝑀𝑐𝑟 , respectively). Analytical and numerical methods have 

been applied, as follows: (i) analytical formulae derived in Chapter 2, as well as further 

formulae for other boundary conditions derived in this chapter, (ii) LBA analysis by beam FEM, 

(iii) LBA by shell FEM, (iv) GNIA by beam FEM, and (v) GNIA by shell FEM.  

 

Figure 3.1: Beam configuration, coordinates, displacements. 

A key objective here is to investigate the effect of end supports. Accordingly, various 

classic boundary condition combinations have been considered as summarized in Table 3.1. 

The main two variables are the rotation and warping, the latter one being the distortion of the 

cross-sectional plane along the beam's length due to non-uniform torsion [83]. In the table ‘P’ 

indicates a free condition (i.e., “pinned”), and ‘F’ indicates a fixed condition, while ‘r’ and ‘w’ 

specify whether the fixity is for rotation (about the minor axis y) or warping. 

Table 3.1: Boundary conditions combination. 

 Left end Right end notation 

 rot. warp. rot. warp.  

1 P P P P PrPw-PrPw 

2 F F F F FrFw-FrFw 

3 P F P F PrFw-PrFw 

4 F P F P FrPw-FrPw 

5 P P F F PrPw-FrFw 

It is important to underline that the transverse translations (along x and y) as well as the 

twisting rotation around the longitudinal axis are always prevented at both ends, the longitudinal 

translation is always prevented at one end, and the rotation about the major axis x is always 

free. 
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Two cross-section types are considered: doubly-symmetric I-shaped sections (DSI), and 

rectangular hollow sections (RHS). The reviewed literature suggests that the ratio of the weak 

to strong axis moments of inertia (𝐼𝑦 𝐼𝑥⁄ ) is the main influencing factor of the in-plane deflection 

effect; the cross-sections of the study have been defined accordingly, including a wide range of 

𝐼𝑦 𝐼𝑥⁄  ratios. Another important aspect is that unlike the beam element FEM or analytical 

solutions, the shell element solution is affected by local deformations. However, if the beam is 

long enough and the plates are thick enough, these local deformations are less influential. Since 

the aim of the study is to compare the various methods, relatively long beams and thick plates 

are employed.  

In the case of DSI, the flange width is 200 mm, the flange and web thicknesses are 20 

and 12 mm, respectively, while the total section depth (out-to-out) is a variable so that the 𝐼𝑦 𝐼𝑥⁄  

ratio would be in the range of 0.05 to 0.75. In the case of RHS, the section width is 150 mm 

(out-to-out), the flange and web thicknesses are 30 and 10 mm, respectively, the total section 

depth (out-to-out) varies, so that the 𝐼𝑦 𝐼𝑥⁄  ratio would be in the range of 0.03 to 0.75. The actual 

section depth values and inertia ratio values are summarized in Table 3.2.  

Table 3.2: Section depths and inertia ratios 

DSI  RHS 

depth (mm) 𝐼𝑦 𝐼𝑥⁄   depth (mm) 𝐼𝑦 𝐼𝑥⁄  

150 0.75  150 0.75 

160 0.65  160 0.66 

180 0.49  180 0.53 

200 0.39  200 0.43 

300 0.15  300 0.22 

400 0.08  400 0.13 

500 0.05  500 0.09 

   1000 0.03 

Regarding the length of the beam, a pilot study was conducted in which different lengths 

were analyzed for various boundary conditions. It was found that the RHS section experiences 

higher local deformations, requiring longer beams to reduce them. It was found that for the DSI, 

a length of 15 meters, and for the RHS, 30 meters, are suitable for keeping the local 

deformations small, even though it is not possible to completely eliminate them. (It is to note 

that the effect of beam length and localized deformations are discussed in Section 3.6). For the 
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material, a classic isotropic steel is considered, with a Young’s modulus equal to 210000 MPa, 

and Poisson’s ratio equal to 0.3. 

3.3 Analytical solutions 

This section extends the analytical derivations for the various boundary conditions 

proposed in Chapter 2. Critical moment formulae are derived for each support condition, both 

for open cross-sections with small torsional rigidity, and for closed cross-sections with large 

torsional rigidity. The derivation options are selected so that the final formulae would be as 

simple as possible. For the cross-section, options ’open-simple‘ and ‘closed-simple’ are used, 

and the final equation is simplified to a quadratic equation. Due to these simplifications, the 

longitudinal strain can be either 𝜀𝑧
𝑃𝑖,𝑠𝑖𝑚𝑝𝑙𝑒

 or 𝜀𝑧
3𝑟𝑑 . Finally, 𝜅𝑦  and 𝜅𝑧

𝑔𝑒𝑛
 are used for the 

curvatures.  

It is to note that the formulae are presented only for open cross-section, though numerical 

result will be shown for both open and closed sections. It should also be noted that the resulting 

formulae are dependent on the assumed displacement functions. Here, to each support condition 

critical moment formulae are initially derived assuming a single trigonometric term in the 

displacement functions, However, it was found that the ‘single-term’ formulae are inaccurate 

in certain cases, therefore, more refined formulae are derived for selected cases, using 3 

trigonometric terms (i.e., ‘3-term’ solutions).  

3.3.1 FrFw-FrFw 

In this case, the weak-axis rotation and warping are fixed at both ends of the beam.  

 Single-term solution 

If a single trigonometric term is used, the simplest displacement functions that satisfy 

the support conditions are as follows: 

𝑢(𝑧) = 𝑢𝑚

1

2
(1 − cos

2𝜋𝑧

𝐿
) 

𝜑(𝑧) = 𝜑𝑚

1

2
(1 − cos

2𝜋𝑧

𝐿
) 

(54) 

where 𝑢𝑚 and 𝜑𝑚 are the displacement amplitudes (in this case, at the middle of the 

beam).  

The 𝑀𝑐𝑟0 without prebuckling deflections is: 
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𝑀𝑐𝑟0,1𝑡 =
𝜋

0.5𝐿
√𝐸𝐼𝑦 (𝐺𝐽 +

𝜋2𝐸𝐼𝑤
(0.5𝐿)2

) (55) 

The formula for the critical moment is: 

𝑀𝑐𝑟,1𝑡 = 𝑀𝑐𝑟0,1𝑡 √(1 −
𝐸𝐼𝑦

𝐸𝐼𝑥
) (1 + 2

𝐸𝐼𝑦

𝐸𝐼𝑥
)⁄  (56) 

It is interesting to observe that while 𝑀𝑐𝑟0,1𝑡 for FrFw-FrFw can be determined from 

PrPw-PrPw using an equivalent length (0.5𝐿), this is not true for  𝑀𝑐𝑟,1𝑡. The simple engineering 

explanation is that in the case of 𝑀𝑐𝑟0  the solution is determined by the 𝑢(𝑧)  and 𝜑(𝑧) 

functions only, both having two half-waves, while in the case of 𝑀𝑐𝑟 the solution is influenced 

by the primary deflection, too, which has only one single half-wave. 

 three-term solution 

The solution can be enhanced by considering further similar terms in the displacement 

approximation. However, only a few terms can be added if closed-form results are desired. The 

results suggest that additional terms are more important for the rotation, thus, a reasonable 

possible approximation is as follows: 

 

𝑢(𝑧) = 𝑢𝑚

1

2
(1 − cos

2𝜋𝑧

𝐿
)             

𝜑(𝑧) = 𝜑𝑚 [
1

2
(1 − cos

2𝜋𝑧

𝐿
) + 𝑟2 (1 − cos

4𝜋𝑧

𝐿
) + 𝑟3 (1 − cos

6𝜋𝑧

𝐿
)] 

(57) 

 
Where 𝑟2 and 𝑟3 are scalar parameters to be determined. (It is to note that in the 3-term 

displacement assumption 𝑢𝑚  and 𝜑𝑚 are not the displacement amplitudes anymore). After 

performing the derivations, the critical moment without the prebuckling deflections is: 

𝑀𝑐𝑟0,3𝑡 =
𝜋

 0.5𝐿
√𝐸𝐼𝑦 (𝛼𝐺𝐺𝐽 + 𝛼𝑤

𝜋2𝐸𝐼𝑤
(0.5𝐿)2

) 

𝛼𝐺 = 1 + 16𝑟2
2 + 36𝑟3

2      

𝛼𝑤 = 1 + 64𝑟2
2 + 256𝑟3

2 

(58) 

If the prebuckling deflection is considered, the critical moment expression is as follows: 
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𝑀𝑐𝑟,3𝑡 = 𝑀𝑐𝑟0,3𝑡 √(1 −
𝐼𝑦

𝐼𝑥
)(1 + 2

𝐼𝑦

𝐼𝑥
(1 + 4𝑟2 + 4𝑟3 + 6𝑟2

2 + 6𝑟3
2 + 8𝑟2𝑟3))⁄  (59) 

Note, if 𝑟2 = 𝑟3 = 0, the 3-term formulae simplify to the single-term solution. Due to 

symmetry, the critical moments can be plus or minus; the positive ones are taken as the critical 

moment. 

 Moment increase due to the prebuckling deflection 

In order to calculate the increase due to the prebuckling deflection, the minimum values 

of both 𝑀𝑐𝑟0  and 𝑀𝑐𝑟  are to be found. Regarding 𝑀𝑐𝑟0 , it is obvious that 𝑀𝑐𝑟0,3𝑡  takes its 

minimal value if 𝑟2 = 𝑟3 = 0; i.e., 𝑀𝑐𝑟0,𝑚𝑖𝑛 = 𝑀𝑐𝑟0,1𝑡. Regarding 𝑀𝑐𝑟, first, the minimum of 

the 𝑀𝑐𝑟,3𝑡 expression should be found; mathematically, the following equation system should 

be solved: 

𝜕𝑀𝑐𝑟,3𝑡

𝜕𝑟2
= 0   

𝜕𝑀𝑐𝑟,3𝑡

𝜕𝑟3
= 0 (60) 

Unfortunately, this equation system cannot be solved analytically. As a simplification, 

the first equation is solved by assuming 𝑟3 = 0 , from which 𝑟2  is obtained (which is a 

reasonable approximation, since 𝑟3 is supposed to be a rather small number). Then, the second 

equation can be solved. Eliminating the higher-order terms of 𝑟2  and 𝑟3 , the following 

expressions can be derived: 

𝑟2 =
𝐸𝐼𝑦(𝐺𝐽𝐿2 + 4𝜋2𝐸𝐼𝑤)

𝐺𝐽𝐿2(4𝐸𝐼𝑥 + 5𝐸𝐼𝑦) + 4𝜋2𝐸𝐼𝑤(16𝐸𝐼𝑥 + 29𝐸𝐼𝑦)
 

𝑟3 =
𝐸𝐼𝑦(𝐺𝐽𝐿2 + 4𝜋2𝐸𝐼𝑤)(1 + 2𝑟2)

𝐺𝐽𝐿2(9𝐸𝐼𝑥 + 15𝐸𝐼𝑦) + 4𝜋2𝐸𝐼𝑤(81𝐸𝐼𝑥 + 159𝐸𝐼𝑦)
 

(61) 

The above formulae suggest that 𝑟2 and 𝑟3 increase as the beam length increases and/or 

the inertia ratio increases. A practical upper bound is 1/9 and 11/216 for 𝑟2 and 𝑟3, respectively, 

which belong to 𝐿 → ∞ and 𝐼𝑦 𝐼𝑥⁄ = 1. A mathematical lower bound for both 𝑟2 and 𝑟3 are 

zero, when 𝐿 = 0 and 𝐼𝑦 𝐼𝑥⁄ = 0. This also means that in any practical case the minimum 𝑀𝑐𝑟 

value can be obtained from the 3-term solution, i.e., 𝑀𝑐𝑟,𝑚𝑖𝑛 = 𝑀𝑐𝑟,3𝑡 with the 𝑟2 and 𝑟3 values 

from Eq. (61). Another observation is that both 𝑟2 and 𝑟3 are small numbers, but 𝑟3 is smaller 

than 𝑟2. This justifies the approximate approach employed in the derivation. (Furthermore, this 

makes it possible to further simplify Eq. (59), e.g., by eliminating some or all the higher-order 

terms of 𝑟3 and/or 𝑟2.). Finally, the moment increase can be calculated as (𝑀𝑐𝑟 − 𝑀𝑐𝑟0)/𝑀𝑐𝑟0. 
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3.3.2 FrPw-FrPw 

This is the case where the weak-axis rotation is fixed, and warping is free at both ends 

of the beam. 

 Single-term solution 

If a single trigonometric term is used, the simplest displacement functions that satisfy 

the support conditions are as follows: 

𝑢(𝑧) = 𝑢𝑚

1

2
(1 − cos

2𝜋𝑧

𝐿
) 

𝜑(𝑧) = 𝜑𝑚sin
𝜋𝑧

𝐿
 

(62) 

The critical moment without the prebuckling deflections is: 

𝑀𝑐𝑟0,1𝑡 =
3𝜋

8

𝜋

0.5𝐿
√𝐸𝐼𝑦 (𝐺𝐽 +

𝜋2𝐸𝐼𝑤
𝐿2

) (63) 

The critical moment with the prebuckling deflections is: 

𝑀𝑐𝑟,1𝑡 = 𝑀𝑐𝑟0,1𝑡 √(1 −
𝐸𝐼𝑦

𝐸𝐼𝑥
) (1 + (

9𝜋2

16
− 1)

𝐸𝐼𝑦

𝐸𝐼𝑥
)⁄  (64) 

The 𝑀𝑐𝑟0,1𝑡 formula can be interpreted as follows: the equivalent length for twisting is 

1.0𝐿, (which can directly be concluded from the assumed displacement function), while the 

equivalent length for the lateral translation is (4/3𝜋)𝐿 = 0.4244𝐿, i.e., smaller than what could 

be predicted from the shape function. However, detailed numerical analysis results suggest that 

this solution is not precise, and the real critical moment is somewhat smaller, which can be 

approximated by a more refined displacement function assumption, as follows. 

 three-term solution 

Better results can be obtained (and still, the critical moments can be expressed in closed 

format) if the displacements are approximated as follows: 

𝑢(𝑧) = 𝑢𝑚

1

2
(1 − cos

2𝜋𝑧

𝐿
)             

𝜑(𝑧) = 𝜑𝑚 [sin
𝜋𝑧

𝐿
+ 𝑟2sin

3𝜋𝑧

𝐿
+ 𝑟2sin

5𝜋𝑧

𝐿
] 

(65) 

 
where 𝑟2 and 𝑟3 are scalar parameters to be determined. 
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The solution without the prebuckling deflection is: 

𝑀𝑐𝑟0,3𝑡 = 𝛼𝑦

𝜋

 0.5𝐿
√𝐸𝐼𝑦 (𝛼𝐺𝐺𝐽 + 𝛼𝑤

𝜋2𝐸𝐼𝑤
(0.5𝐿)2

) 

𝛼𝑦 =
105𝜋

8(35 − 63𝑟2 − 25𝑟3) 
     

𝛼𝐺 = 1 + 9𝑟2
2 + 25𝑟3

2      

𝛼𝑤 = 1 + 81𝑟2
2 + 625𝑟3

2 

(66) 

The critical moment with prebuckling deflections can be derived similarly, and the 

𝑀𝑐𝑟,3𝑡/ 𝑀𝑐𝑟0,3𝑡ratio can be expressed as follows: 

𝑀𝑐𝑟,3𝑡 = 𝑀𝑐𝑟0,3𝑡 √(1 −
𝐼𝑦

𝐼𝑥
) (1 +

𝐼𝑦

𝐼𝑥
(
11025𝜋2(1 + 𝑟22 + 𝑟32)

16(35 − 63𝑟2 − 25𝑟3)2
− 1))⁄  (67) 

Again, if 𝑟2 = 𝑟3 = 0 , both critical moment formulae simplify to the single-term 

solutions. 

 Moment increase due to the prebuckling deflection 

To calculate the increase due to the prebuckling deflection, the minimum values of both 

𝑀𝑐𝑟0 and 𝑀𝑐𝑟 are to be found. For this support, the minimum point of either formula is not 

obvious. Regarding 𝑀𝑐𝑟0,3𝑡, the following equation system must be solved: 

𝜕𝑀𝑐𝑟0,3𝑡

𝜕𝑟2
= 0   

𝜕𝑀𝑐𝑟0,3𝑡

𝜕𝑟3
= 0 (68) 

This can be done analytically, and the following expressions are obtained: 

𝑟2 = −
𝐺𝐽 +

𝜋2𝐸𝐼𝑤

𝐿2

5𝐺𝐽 + 45
𝜋2𝐸𝐼𝑤

𝐿2

= −
𝐺𝐽𝐿2 + 𝜋2𝐸𝐼𝑤

5𝐺𝐽𝐿2 + 45𝜋2𝐸𝐼𝑤
      

𝑟3 = −
𝐺𝐽 +

𝜋2𝐸𝐼𝑤

𝐿2

35𝐺𝐽 + 875
𝜋2𝐸𝐼𝑤

𝐿2

= −
𝐺𝐽𝐿2 + 𝜋2𝐸𝐼𝑤

35𝐺𝐽𝐿2 + 875𝜋2𝐸𝐼𝑤
 

(69) 

It can be observed that 𝑟2 and 𝑟3 depend on the length (and the torsion properties), but 

both are bounded. If 𝐿 → 0, then 𝑟2 and 𝑟3 takes the values -1/45 and -1/875, respectively. If 

𝐿 → ∞, then 𝑟2 and 𝑟3 approaches -1/5 and -1/35, respectively. Theoretically, the minimum 

point of the 𝑀𝑐𝑟,3𝑡 formula can be found by setting the partial derivatives to zero. Practically 

however, the 𝑀𝑐𝑟,3𝑡 expression is too complex, and closed-form analytical solution for 𝑟2 and 
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𝑟3  cannot be obtained. It is reasonable to assume, however, that the same 𝑟2  and 𝑟3  which 

minimize 𝑀𝑐𝑟0,3𝑡  will approximately minimize 𝑀𝑐𝑟,3𝑡 , too. However, it cannot be easily 

predicted whether the minimal critical moments belong to the single-term or 3-term solutions. 

That is why, finally, the minimal critical moment values can be obtained as 𝑀𝑐𝑟0,𝑚𝑖𝑛 =

𝑚𝑖𝑛(𝑀𝑐𝑟0,1𝑡, 𝑀𝑐𝑟0,3𝑡) and 𝑀𝑐𝑟,𝑚𝑖𝑛 = 𝑚𝑖𝑛(𝑀𝑐𝑟,1𝑡,𝑀𝑐𝑟,3𝑡) with 𝑟2 and 𝑟3 values from Eq. (69). 

Then, the moment increase can be. 

3.3.3 PrFw-PrFw 

This is the case where the weak-axis rotation is free, and warping is fixed at both ends 

of the beam.  

 Single-term solution 

If a single trigonometric term is used, the simplest displacement functions that satisfy 

the support conditions are as follows: 

𝑢(𝑧) = 𝑢𝑚sin
𝜋𝑧

𝐿
 

𝜑(𝑧) = 𝜑𝑚

1

2
(1 − cos

2𝜋𝑧

𝐿
) 

(70) 

The critical without the prebuckling deflections is: 

𝑀𝑐𝑟0,1𝑡 =
3𝜋

8

𝜋

𝐿
√𝐸𝐼𝑦 (𝐺𝐽 +

𝜋2𝐸𝐼𝑤
(0.5𝐿)2

) (71) 

The critical moment with the prebuckling deflections is: 

𝑀𝑐𝑟,1𝑡 = 𝑀𝑐𝑟0,1𝑡 √(1 −
𝐸𝐼𝑦

𝐸𝐼𝑥
) (1 +

𝐸𝐼𝑦

𝐸𝐼𝑥
(
27𝜋2

256
− 1))⁄  (72) 

Since 27𝜋2 256⁄ − 1 = 0.0409 , this formula is nearly identical to the reference 

solution. This implies that the warping fixity does not cause a significant change in how the 

prebuckling deflection influences the critical moment. The 𝑀𝑐𝑟0,1𝑡 formula can be interpreted 

as follows: the equivalent length for twisting is 0.5𝐿, (which can directly be concluded from 

the assumed displacement function), while the equivalent length for the lateral translation is 

(8/3𝜋)𝐿 = 0.8488𝐿 , i.e., the warping restraint has some supporting effect for the lateral 

translations, too. However, detailed numerical analysis results suggest that this solution is not 

precise, and the real critical moment is somewhat smaller, which can be approximated by a 

more refined displacement function assumption. 
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 three-term solution 

Similar to other cases, the displacements can be approximated more precisely as follows: 

𝑢(𝑧) = 𝑢𝑚sin
𝜋𝑧

𝐿
         

𝜑(𝑧) = 𝜑𝑚 [
1

2
(1 − cos

2𝜋𝑧

𝐿
) + 𝑟2 (1 − cos

4𝜋𝑧

𝐿
) + 𝑟3 (1 − cos

6𝜋𝑧

𝐿
)] 

(73) 

 
where 𝑟2 and 𝑟3 are scalar parameters to be determined. The solution without the prebuckling 

deflection is: 

𝑀𝑐𝑟0 = 𝛼𝑦

𝜋

 𝐿
√𝐸𝐼𝑦 (𝛼𝐺𝐺𝐽 + 𝛼𝑤

𝜋2𝐸𝐼𝑤
(0.5𝐿)2

) 

𝛼𝑦 =
105𝜋

8(35 + 56𝑟2 + 54𝑟3) 
     

𝛼𝐺 = 1 + 16𝑟2
2 + 36𝑟3

2      

𝛼𝑤 = 1 + 64𝑟2
2 + 324𝑟3

2 

(74) 

The solution with the prebuckling deflection is: 

𝑀𝑐𝑟,3𝑡 = 𝑀𝑐𝑟0,3𝑡 √(1 −
𝐼𝑦

𝐼𝑥
) (1 +

𝐼𝑦

𝐼𝑥
𝛼𝑟)⁄  

𝛼𝑟 =
11025𝜋2(3 + 8𝑟2 + 8𝑟3 + 16𝑟2𝑟3 + 12𝑟2

2 + 12𝑟3
2)

256(35 + 56𝑟2 + 54𝑟3)2
− 1 

(75) 

 
Note, if 𝑟2 = 𝑟3 = 0, the formulae simplify to the single-term solutions, but this would 

not lead to the lowest critical moments.  

 Moment increase due to the prebuckling deflection 

The expressions for 𝑟2  and 𝑟3  that minimize 𝑀𝑐𝑟0,3𝑡  (and approximately minimize 

𝑀𝑐𝑟,3𝑡), can be obtained similarly as presented in the previous section. The resulting expressions 

are as follows: 

𝑟2 =
𝐺𝐽 +

𝜋2𝐸𝐼𝑤

(0.5𝐿)2

10𝐺𝐽 + 40
𝜋2𝐸𝐼𝑤

(0.5𝐿)2

=
𝐺𝐽𝐿2 + 4𝜋2𝐸𝐼𝑤

10𝐺𝐽𝐿2 + 160𝜋2𝐸𝐼𝑤
      (76) 
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𝑟3 =
3𝐺𝐽 + 3

𝜋2𝐸𝐼𝑤

(0.5𝐿)2

70𝐺𝐽 + 630
𝜋2𝐸𝐼𝑤

(0.5𝐿)2

=
3𝐺𝐽𝐿2 + 12𝜋2𝐸𝐼𝑤

70𝐺𝐽𝐿2 + 2520𝜋2𝐸𝐼𝑤
 

Both 𝑟2 and 𝑟3 are bounded: 𝑟2 is between 1/40 and 1/10, while 𝑟3 is between 1/210 and 

3/70. The minimal critical moment values can then be obtained as 𝑀𝑐𝑟0,𝑚𝑖𝑛 = (𝑀𝑐𝑟0,1𝑡,𝑀𝑐𝑟0,3𝑡) 

and 𝑀𝑐𝑟,𝑚𝑖𝑛 = (𝑀𝑐𝑟,1𝑡, 𝑀𝑐𝑟,3𝑡). 

3.3.4 PrPw-FrFw 

This is the case where the weak-axis rotations and warping are fixed at one end, and free 

at the other. It turns out that assumed displacement functions with single trigonometric terms 

lead to reasonably good solutions, thus, no more refined solutions are shown here. The assumed 

displacement functions are deducted from the flexural buckling solution of a pinned-clamped 

column, as follows: 

𝑢(𝑧) = 𝑢𝑚 (sin
𝜋𝑧

𝐾𝐿
−

𝑧

𝐿
sin (

𝜋

𝐾
)) 

 𝜑(𝑧) = 𝜑𝑚 (sin
𝜋𝑧

𝐾𝐿
−

𝑧

𝐿
sin (

𝜋

𝐾
)) 

(77) 

where 𝐾  can be interpreted as an equivalent (i.e., buckling) length factor. 

Mathematically, the condition 
𝜋

𝐾
= tan (

𝜋

𝐾
) must be satisfied, from which the approximate value 

of 𝐾 is 0.6992. The 𝑀𝑐𝑟0 without prebuckling deflections is: 

𝑀𝑐𝑟0,1𝑡 =
𝜋

0.6992𝐿
√𝐸𝐼𝑦 (𝐺𝐽 +

𝜋2𝐸𝐼𝑤
(0.6992𝐿)2

) (78) 

The 𝑀𝑐𝑟 with prebuckling deflections is: 

𝑀𝑐𝑟,1𝑡 = 𝑀𝑐𝑟0,1𝑡 √(1 −
𝐸𝐼𝑦

𝐸𝐼𝑥
) (1 +

2𝐸𝐼𝑦

3𝐸𝐼𝑥
)⁄  (79) 

The moment increase can be calculated similarly., simply taking the single-term 

solutions, i.e., 𝑀𝑐𝑟0,𝑚𝑖𝑛 = 𝑀𝑐𝑟0,1𝑡  and 𝑀𝑐𝑟,𝑚𝑖𝑛 = 𝑀𝑐𝑟,1𝑡. 

3.3.5 Reference solution 

Furthermore, a simplified analytical solution (proposed in several papers by various 

researchers) for the simple case is also considered. From this, the 𝑀𝑐𝑟/𝑀𝑐𝑟0  ratio will be 

referred to as the reference ratio and is expressed as follows: 
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𝑀𝑐𝑟

𝑀𝑐𝑟0
= 1 √(1 −

𝐼𝑦

𝐼𝑥
)⁄  (80) 

The increase in the critical moment due to the prebuckling deflection – which will be 

referred to here as reference increase – is expressed as: 

𝑀𝑐𝑟 − 𝑀𝑐𝑟0

𝑀𝑐𝑟0
= 1 √(1 −

𝐼𝑦

𝐼𝑥
)⁄ − 1 (81) 

3.4 Numerical solutions 

3.4.1 Iterative LBA on deflected beam 

If classic LBA is conducted by FEM, (i) first, the stresses are calculated on the 

undeflected structure from the given loading (i.e., a linear static analysis is performed), (ii) then, 

the geometric stiffness matrix is calculated considering the stress distribution obtained in the 

previous step, (iii) then, the loads/stresses are scaled to find the critical values by solving the 

generalized eigen-value problem of the structure. Obviously, this process does not include the 

effect of prebuckling deflections. A possible proposed way to include the prebuckling 

deflections is to perform LBA on a deflected beam by introducing an iterative procedure as 

follows. 

Step #1: First, classic LBA is performed, and 𝑀𝑐𝑟 is calculated (which, in this step, will 

be equal to 𝑀𝑐𝑟0).  

Step #2: Static analysis is performed to get the deflected shape (i.e., the prebuckling 

shape), using the 𝑀𝑐𝑟 as the load from the previous Step.  

Step #3: LBA is performed on the deflected shape, using the deflected shape from the 

previous step, from which a new value for 𝑀𝑐𝑟 is obtained. 

Since the critical moment calculated in Step #3 (on the deflected beam) is different from 

the critical moment calculated in Step #1 (on the undeflected beam), Steps #2 and #3 should be 

repeated till convergence. Note, this iterative procedure is similar to the one applied in [76].  

It can be understood that this iterative LBA is slightly different from the real behavior, 

since in the reality the stresses and deflections increase gradually as the load increases, whilst 

in the last step of the above iterative procedure (from which 𝑀𝑐𝑟 is finally obtained) there is a 

stress-free deflected beam on which the loads are applied, thus, the stress distribution as well 
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as the geometric stiffness matrix is theoretically different. However, in the case of the actual 

simple beam problem the stress distribution is hardly affected by the primary displacements, 

therefore, the above iterative LBA procedure can be considered as a rather accurate 

representation of the buckling with considering prebuckling deflections. 

The above-described procedure is applicable whether the calculation uses a beam or 

shell FEM model. The convergence of 𝑀𝑐𝑟 through iterations is illustrated in Table 3.3, where 

the increase in the critical moment due to prebuckling deformations is shown in terms of the 

number of iterative steps. (The actual values belong to DSI section, PrPw-PrPw boundary 

conditions, and L=15 m length). Table 3.3 shows that the deeper the section is, the fewer 

iterations are required to achieve convergence. This is due to the smaller in-plane deflections 

in these sections, and, as a result, a smaller effect of prebuckling deformations.  

Table 3.3: Increase in critical moments due to prebuckling deformation in terms of iterations. 

No. of iteration steps 
𝐼𝑦 𝐼𝑥⁄ = 

0.75 

𝐼𝑦 𝐼𝑥⁄ = 

0.65 

𝐼𝑦 𝐼𝑥⁄ = 

0.39 

1 42.06% 35.40% 19.82% 

2 62.93% 49.91% 24.13% 

3 73.82% 56.10% 25.07% 

4 79.63% 58.79% 25.28% 

6 84.45% 60.47% 25.34% 

8 85.87% 60.80% 25.34% 

10 86.29% 60.86% 25.34% 

In in Step #2 of the process, the static analysis should generally be nonlinear. The reason 

is that occasionally large deflections are experienced, and the deflected geometry is improperly 

captured by a linear analysis. In the linear analysis, the stiffness matrix is calculated for the 

undeflected (perfectly horizontal) beam, the whole load is applied to the member at once, and 

the equilibrium equation is solved. Even though one end is free to move axially, the calculated 

axial displacement would be zero, causing the actual length of the deflected beam to be larger 

compared to the original one. On the other hand, in the case of nonlinear analysis, the load is 

applied to the structure in an incremental way, and after the end of each incremental step, the 

stiffness matrix is updated, therefore the roller support displaces axially, and the total length of 

the beam remains (practically) unchanged. The total vertical deflections in the two cases are 

marginally different, however, the difference in the length of the deflected beam is the important 

factor since it modifies the curvature of the beam in the primary plane, which has a non-

negligible effect on the critical moment of the – already curved – beam.  
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 It was experienced that with using a higher number of load-steps, higher accuracies can 

be reached in the non-linear static analysis. Table 3.4 shows the percentages of error in the 

resulting 𝑀𝑐𝑟 when using different number of load steps. (When the number of steps is one, this 

represents the linear static analysis). Moreover, if the 𝐼𝑦 𝐼𝑥⁄  ratio is small, the prebuckling 

deflections are small, and the linear and nonlinear static analysis lead to similar increase in 𝑀𝑐𝑟. 

However, if the 𝐼𝑦 𝐼𝑥⁄  is large enough, the influence of the nonlinearity is more visible.  

Table 3.4: Error in 𝑀𝑐𝑟  in terms of load incremental steps. 

Number of load steps 
𝐼𝑦 𝐼𝑥⁄ = 

0.75 

𝐼𝑦 𝐼𝑥⁄ = 

0.65 

𝐼𝑦 𝐼𝑥⁄ = 

0.39 

1 8.30% 4.37% 0.78% 

2 3.88% 1.97% 0.35% 

5 1.16% 0.58% 0.10% 

10 0.06% 0.14% 0.03% 

15 0.00% 0.00% 0.00% 

 

3.4.2 GNIA with small initial imperfection 

Another possible approach to numerically calculate the critical moment with considering 

the prebuckling effects is the geometrically nonlinear incremental analysis with initial 

imperfections (GNIA). The initial imperfection is necessary to initiate the secondary 

displacements, i.e., the buckling. For this reason, first, LBA is performed on the undeflected 

beam, then the (first mode) buckled shape – with proper scaling – is used as initial geometrically 

imperfect shape, and then the nonlinear analysis is performed, from which load-displacement 

curves can be established.  

As it is well-known, if GNIA is performed, the secondary displacements (i.e., in this 

case, lateral translation and twisting rotation) are gradually increasing, therefore, there is no 

point of bifurcation, i.e., the critical moment cannot clearly be captured. However, if the initial 

imperfection is small, the load-displacement curve will have a relatively sharp “corner” point. 

This is illustrated in Fig. 3.2, where the total horizontal displacement at the reference point (i.e., 

the middle point of the beam) is plotted against the applied load, for three values of initial 

imperfection amplitude. (Note, the actual plot belongs to DSI section with 𝐼𝑦 𝐼𝑥⁄ = 0.49, PrPw-

PrPw supports.) It can be observed that when the initial amplitude is 0.001 mm (an extremely 

small value for a 15-m-long beam), the displacement increment significantly increases at the 

load step with approximately 1.3 mm of total translation, causing the tangent of the curve to 
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approach zero. The load value from such a step is chosen as the nominal critical moment. (In 

the example shown in Fig. 3.2, this load is well above 𝑀𝑐𝑟0, and is very close to 𝑀𝑐𝑟 calculated 

by the iterative LBA procedure.) 

  

Figure 3.2: End moment vs. displacement of the reference point, for various values of initial 

imperfection 

3.4.3 FEM models 

 The models in general 

When beam finite element analysis is performed, it is important to make sure that the 

employed beam element properly considers the warping and Saint-Venant torsion of thin-

walled members. In this study the educational Mastan2 [84], and the commercial Ansys 

software [85] have been employed. Since the results of these two programs are nearly identical 

for the cases discussed, only the Ansys results are presented. The beams have been discretized 

into 32 beam finite elements along the length, and the load is applied as concentrated moments 

at the ends. 

In the case of shell FE analysis, the student version of Ansys has been used. The applied 

finite element is the SHELL181. For the discretization of the model, the (average) element size 

was set to 40 mm. The end moments have been placed onto the model as equivalent distributed 

loads (i.e., line pressures) acting along the edges of the flanges and web of the member at the 

midline of the shell elements (Fig. 3.3). An important feature is that line pressure is 

perpendicular to the edges and remain so even when the structure deforms; therefore, the 

resultant of the loading (i.e., the bending moment) remains independent of the deflections.  
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Figure 3.3: Line pressure applied to the shell model. 

 Supports in beam FEM 

Since in the analyses, the geometry is updated as part of the process (either in the case 

of iterative LBA or GNIA), and since the primary deflections can potentially be significant, it 

is a question whether the twisting rotations are interpreted in the fixed (i.e., global) coordinate 

system, or in a rotating (i.e., local) coordinate system aligned to the end cross-section. Both 

interpretations are reasonable but require different handling and lead to different results, since 

the twisting fixity, if applied in the global coordinate system, results in some fixity about the 

weak axis in the local (i.e., deflected) coordinate system. 

If the rotations are interpreted in the global system, then the rotational fixity can directly 

be applied to the relevant DOF of the end cross-section. However, if the rotations are interpreted 

in the local system, some special support solution is needed. In this research, the rotations are 

typically interpreted in the local system and are realized by adding two small cantilevers along 

the local y’ axis at the beam ends, which remain perpendicular to the longitudinal axis even 

when the beam is deflected. The twisting is then prevented by defining x-directional 

translational supports at the end of the cantilevers (Fig 3.4).  

  

Figure 3.4: Support against local twisting rotation: (a) undeformed, (b) deformed. 
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It is to mention that, in the Fr case, this support defention problem does not exist because 

fixities about both the y and z axis exist, ensuring that both the minor-axis and twisting rotations 

are prevented, regardless in which coordinate system the rotations are interpreted. The 

interpretation of the twisting rotation has an important effect on the deflections. Fig. 3.5 shows 

four situations (the actual shown case is for the RHS section with L = 30 m), depending on 

whether the support is local or global (i.e., LS or GS), and whether the rotation is interpreted in 

the local or global system (i.e., LR or GR). Not surprisingly, the twisting rotation interpretation 

has noticeable influence on the calculated critical moment values.  

 

Figure 3.5: Local and global twisting rotations for the different support types. 

To show the effect clearly, Table 3.5 shows the results of using either the global or the 

local supports: 𝑀𝑐𝑟0 (buckling moment without prebuckling deformations), and the increase in 

moment due to prebuckling deflections are given for the same case (which is RHS section with 

PrPw-PrPw supports). As can be observed, the 𝑀𝑐𝑟0 values are slightly affected, which is due 

to the extra flexibility provided by the small cantilevers.  

Table 3.5: The effect of support type on the critical moments 

𝐼𝑦 𝐼𝑥⁄  

Global Support  
𝑀𝑐𝑟0 

kNm 

Local Support  
𝑀𝑐𝑟0 

kNm 

Global Support 

   

incr (%) 

Local Support 

 

 incr (%) 

0.53 432.2 430.6 11.39 75.47 

0.43 461.1 459.4 7.39 58.08 

0.22 518.4 516.4 0.82 25.73 

0.13 575.1 572.7 -0.37 15.79 

0.09 853.1 847.7 -0.65 11.05 

0.03 1126.6 1115.9 -0.5 3.76 
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However, the increase in moment is strongly affected even if the 𝐼𝑦 𝐼𝑥⁄  ratio is small. (It 

is fair to add that the support interpretation effect is much less significant in the case of DSI 

sections, primarily because the critical moments are smaller, hence the primary deflections are 

smaller, so that the difference between the local and global coordinate systems is small.) 

Though both the local and global supports might be meaningful, in the current studies local 

supports are applied as assumed in the analytical models. 

 Supports in shell FEM 

When shell FEM is used for the analysis of thin-walled members, it is not evident how 

the classic end supports (such as, pinned) can be realized. If the support is PrPw, two possible 

versions are considered.  

Support #1: Each node of the end cross-sections is supported perpendicularly to the plate 

element as shown in Fig. 3.6(a). Note, such support is successfully used for the buckling 

analysis of thin-walled members, e.g., in [44,86]. 

Support #2: The end section nodes are supported against x or y translations, as shown in 

Fig. 3.6(b). Moreover, to reduce the localized deformations, all the nodes are restrained against 

twisting rotation, which is realized by introducing a master node which all the nodes at the end 

of the beam are rigidly linked to. (It is to note that the so-called master node is a separate node, 

i.e., not part of the member discretization, though in the case of DSI section its geometric 

location coincides with one of the nodes of the discretized member).   

  

Figure 3.6: illustration of end supports in shell FE model for the DSI and RHS sections 

If the beam axis is horizontal (i.e., undeflected beam), the two PrPw support versions 

are practically identical. However, both in the iterative LBA and GNIA, the geometry is 

updated, i.e., deflected beams are analyzed. As soon as the beam is deflected, the pressure load 

at the plate edges becomes inclined, and the vertical translational supports in Support #1 can 

directly take a portion of the loading, hence, the edge moment is not fully transferred to the 
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beam. On the other hand, in the case of Support #2, all the edge pressure load is directly 

transferred to the beam. The difference between Support #1 and #2 is reflected in the critical 

load values, too, as illustrated by Table 3.6, which is for the DSI section, PrPw-PrPw end 

supports, and a length of 15m. 

Table 3.6: Increase in critical moment in terms of 𝐼𝑦 𝐼𝑥⁄  for both support configurations  

𝐼𝑦 𝐼𝑥⁄  
𝑀𝑐𝑟0 

kNm 

Support #1 

incr (%) 

Support #2 

incr (%) 

0.75 147.8 86.29 229.17 

0.65 148.2 60.80 128.81 

0.49 149.1 36.54 51.80 

0.39 150.0 25.33 30.81 

0.15 1.55.3 7.96 8.16 

0.08 159.3 3.77 3.86 

0.05 166.2 2.22 2.16 

Obviously, the larger the 𝐼𝑦 𝐼𝑥⁄ , the larger the difference between the two support 

versions, which is due to the larger deflections. Though none of these support versions can be 

considered incorrect, Support #2 is employed in the further analysis, since this solution is 

comparable to the beam element model, and the analytical derivations.  

In this study, 4 types of end supports are necessary to cover all support conditions in 

Table 1. (i) PrPw is realized as Support #2. (ii) In the case of PrFw support, the solution is 

similar to PrPw, but the additional warping support is introduced by forcing the linked nodes 

to follow the longitudinal translation of the master node. (iii) The FrPw support cannot easily 

be realized in a shell model, therefore, this support case was not considered in shell FEM 

analyses. (iv) FrFw is similar to PrFw, but, additionally, the master node is restrained against 

the rotation around the vertical axis (y). 

3.5 Numerical results 

3.5.1 Critical moments without prebuckling deformations 

The results of 𝑀𝑐𝑟0 (without prebuckling deformations) are shown in Table 3.7 for the 

DSI sections, and Table 3.8 for the RHS sections. In these tables, “diff. ana.” refers to the 

difference in percentage between the analytical solution and the beam element solution, while 

“diff. shell FEM” refers to the difference between the shell and beam element solutions. It is 

shown that the beam FEM results are practically identical to the analytical ones for DSI 

sections. Furthermore, there is a systematic difference between the beam and shell FEM results, 
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the shell FEM leads to lower critical moments, which is due to the extra flexibility of the shell 

model, and in line with findings from other papers (e.g. [44,87]), with the shell model being 

able to produce non-beam-like deformations, such as localized bending deformations and/or 

cross-section distortion. The magnitude of these non-beam-like deformations depends on the 

geometry of the beam. 

Table 3.7: 𝑀𝑐𝑟0 for DSI sections 

𝐼𝑦 𝐼𝑥⁄  

PrPw-PrPw FrFw-FrFw PrFw-PrFw FrPw-FrPw 

beam 
FEM 
𝑀𝑐𝑟0 

diff. 

ana. 

diff 

shell 
FEM 

beam 
FEM 
𝑀𝑐𝑟0 

diff. 

ana. 

diff 

shell 
FEM 

beam 
FEM 
𝑀𝑐𝑟0 

diff. 

ana. 

diff 

shell 
FEM 

beam 
FEM 
𝑀𝑐𝑟0 

diff. 

ana. 

 kN.m % % kN.m % % kN.m % % kN.m % 

0.75 152 -0.02 -2.52 308 -0.09 -2.43 163 2.37 -2.41 307 0.08 

0.65 152 -0.02 -2.62 310 -0.09 -2.55 164 2.25 -2.51 309 0.08 

0.49 153 -0.02 -2.81 314 -0.08 -2.78 167 2.05 -2.74 313 0.07 

0.39 155 -0.02 -2.91 319 -0.08 -2.90 170 1.88 -2.84 316 0.06 

0.15 161 -0.02 -3.42 343 -0.08 -3.54 187 1.48 -3.46 335 0.09 

0.08 168 -0.02 -4.91 372 -0.10 -5.40 205 1.38 -5.35 355 0.20 

0.05 175 -0.02 -4.98 405 -0.10 -5.56 225 1.37 -5.48 405.3 0.35 

Table 3.8: 𝑀𝑐𝑟0 for RHS sections 

𝐼𝑦 𝐼𝑥⁄  

PrPw-PrPw FrFw-FrFw PrFw-PrFw FrPw-FrPw 

beam 
FEM 
𝑀𝑐𝑟0 

diff. 

ana. 

diff 

shell 
FEM 

beam 
FEM 
𝑀𝑐𝑟0 

diff. 

ana. 

diff 

shell 
FEM 

beam 
FEM 
𝑀𝑐𝑟0 

diff. 

ana. 

diff 

shell 
FEM 

beam 
FEM 
𝑀𝑐𝑟0 

diff. 

ana. 

 kN.m % % kN.m % % kN.m % % kN.m % 

0.75 432 0.02 -3.37 865 -0.08 -3.29 433 6.22 -3.46 865 0.19 

0.66 461 0.01 -3.49 923 -0.09 -3.46 462 6.20 -3.55 923 0.19 

0.53 518 0.07 -3.79 1038 -0.09 -3.94 520 6.28 -3.98 1038 0.19 

0.43 575 0.01 -3.87 1151 -0.10 -4.10 577 6.24 -4.00 1151 0.19 

0.22 853 0.01 -4.42 1708 -0.10 -5.62 857 6.73 -4.56 1708 0.18 

0.13 1127 -0.05 -4.70 2255 -0.12 -7.25 1134 6.90 -4.89 2255 0.17 

0.09 1398 -0.02 -7.26 2799 -0.13 -11.50 1409 7.19 -7.54 2799 0.15 

0.03 2746 -0.03 -13.18 5501 -0.23 -27.05 2791 10.16 -13.77 5500 0.05 

Regarding RHS, the analytical and beam element results for PrPw-PrPw and FrFw-FrFw 

(and also PrPw-FrFw, though not shown) coincide. Moreover, in the case of PrFw-PrFw and 

FrPw-FrPw slightly higher discrepancies are experienced, which suggests that the displacement 
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functions assumed in the analytical derivations (for these support cases) are approximate as 

explained in section 3.3. The differences between the shell and beam element seem to be higher 

in RHS compared to DSI. It can be concluded that the local deformations are larger when 

rotational or warping fixities are introduced, such as: (i) when the beam is shorter, (ii) when the 

beam is deeper, or (iii) in the case of RHS sections compared to DSI sections, resulting in lower 

𝑀𝑐𝑟0 values in the shell element, compared to the beam element and analytical solutions. 

3.5.2 Critical moments with prebuckling effect 

The 𝑀𝑐𝑟 critical moments (with pre-buckling deflections) have been calculated by the 

iterative LBA as well as by GNIA methods, using both beam and shell element solutions. Then, 

𝑀𝑐𝑟 values have been compared to 𝑀𝑐𝑟0 (without pre-buckling deflection). Figs. 3.7 to 3.11 

show the increase in moment (i.e., difference between 𝑀𝑐𝑟 and 𝑀𝑐𝑟𝑜) for the different boundary 

conditions. (Note, GNIA has been performed for DSI sections only. Also, FrPw-FrPw support 

case has not been considered in shell FEM.) 

 

Figure 3.7: Critical moment increase, PrPw-PrPw, DSI (left) and RHS (right) 

 

Figure 3.8: Critical moment increase, FrFw-FrFw, DSI (left) and RHS (right) 
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Figure 3.9: Critical moment increase, PrPw-FrFw, DSI (left) and RHS (right) 

 

Figure 3.10: Critical moment increase, PrFw-PrFw, DSI (left) and RHS (right) 

 

Figure 3.11: Critical moment increase, FrPw-FrPw, DSI (left) and RHS (right) 

Several observations can be made from these plots. Firstly, there is a non-negligible 

difference between DSI and RHS. The critical moment increase is higher in RHS cross sections 

when compared to DSI. Furthermore, the end support has an important effect: while in the 

PrPw-PrPw case (which is overwhelmingly discussed in the literature), the reference increase 
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is nearly precise for DSI, the actual increase can be quite different for other boundary 

conditions.  

In DSI, the increase is typically less than the reference, for all the other considered 

supports. In RHS, the increase can be smaller or larger than the reference, depending on the 

supports. Regarding the effect of end fixity, it is clear that rotation fixity has much higher effect 

than that of warping fixity. It is to highlight that in certain support conditions there is a decrease 

rather than an increase, i.e., the prebuckling effect decreases the critical moment, unlike what 

is suggested in the literature (the prebuckling deformations always increase the critical 

moment).  

In general, good agreement between the methods is observed. The largest discrepancies 

are experienced for high 𝐼𝑦 𝐼𝑥⁄  values (which are less willing to buckle, and therefore less 

important for the practice). When looking at the results of the numerical methods, LBA and 

GNIA lead to practically identical critical moment predictions for both the shell and beam 

element models, which justifies the applicability of the proposed iterative LBA method. 

Also, in general, the agreement between the methods is better in the case of DSI 

compared to RHS. This is primarily due to the fact that the applied displacement 

approximations are less appropriate for sections with large torsional rigidity. It can be seen that 

the agreement is the highest between the beam FEM and the analytical solutions in the case of 

DSI. Even in these cases, however, smaller discrepancies are found. These discrepancies can 

be attributed primarily to the approximate nature of the assumed displacement functions in the 

analytical solutions.  

Finally, in some cases, the shell model results are considerably different from those from 

the other methods. This seems to be particularly true in the case of RHS. These discrepancies 

can be attributed to the localized deformations, which are always present in shell FEM, and 

which seem to have an even higher effect when prebuckling deformations are considered, as 

will briefly be discussed in the next section.  

3.6 On the effect of beam length  

All the numerical results presented above are calculated for specific beam lengths, i.e., 

15 m and 30 m for DSI and RHS beams, respectively. Looking at the simplified analytical 

solutions, the length is not included in the 𝑀𝑐𝑟/𝑀𝑐𝑟0 ratios. However, if more refined analytical 

derivations are applied (i.e., with less simplifications or approximations in the derivations, or 
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by having multiple terms in the assumed displacement functions), especially if some end fixity 

is introduced, too, the 𝑀𝑐𝑟/𝑀𝑐𝑟0 ratios become dependent on the beam length.  

This is in accordance with the numerical results from the beam FEM solutions where 

length-dependency can also be observed, as illustrated by Fig. 3.13, where the increase in 

critical moment is plotted for DSI beams with FrFw-FrFw supports, with the selected section 

having 𝐼𝑦 𝐼𝑥⁄  ratio of 0.49. It can be seen from Fig. 3.12 that unlike the single-term analytical 

solution, all the other solutions show noticeable length-dependency when prebuckling 

deformations are considered. The beam FEM and the enhanced analytical solution show similar 

length dependencies, though the longer the beam is, the less well the results agree. The 

agreement could be improved by further enhancing the analytical solution, e.g., by adding more 

terms into the twisting function. In other words, more terms are needed for longer beams for an 

accurate solution.  

  

Figure 3.12: Effect of prebuckling deformations across the length. 

At the same time, a more pronounced length-dependency is experienced in the shell 

FEM results. The critical moment increase from the shell FEM initially shows an increase with 

increasing the length, but then start to decrease, following the beam FEM behavior. The 

discrepancy between the tendencies in the case of short beams is due to the localized (i.e., non-

beam-like) deformations, as discussed in the following Section. It should be mentioned that the 

effect of the local deformations exists in addition to the length effect included in the beam 

element solutions (when the beam is long enough for localized deformations to be negligible, 

the shell element solution follows the trend observed in the other solutions).  
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 3.7 On the effect of localized deformations  

The effect of beam length in the beam and analytical results is well explained by the 

analytical derivations. The further length-dependency in the shell FEM results is due to the 

localized (i.e., non-beam-like) deformations which are naturally allowed in shell FEM but 

excluded from beam FEM and analytical derivations. To demonstrate this in a simple and 

straightforward way, the so-called local deformation index (ILD) has been introduced here, 

which is interpreted for a cross-section, i.e., can be calculated for any position along the beam, 

as: 

𝐼𝐿𝐷 =
𝜑𝑚𝑎𝑥 − 𝜑𝑎𝑣𝑔

𝜑𝑎𝑣𝑔,𝑚𝑎𝑥
 (82) 

where 𝜑𝑚𝑎𝑥  is the maximum twisting rotation in the cross-section, and 𝜑𝑎𝑣𝑔  is the 

average twisting rotation of the cross-section, while 𝜑𝑎𝑣𝑔,𝑚𝑎𝑥 is the maximum of the average 

rotations along all cross sections in the beam. Practically, these rotations can be obtained from 

the shell FEM results as nodal rotations around the longitudinal axis. After calculating the local 

deformation index for many cross-sections, the highest value can be used (i.e., 𝐼𝐿𝐷,𝑚𝑎𝑥 ) to 

characterize the magnitude of localized deformations of the whole beam by a single number. In 

most cases, the maximum value occurs at mid-length where the deformations are the largest. 

Table 3.9 shows the maximum local deformation index for beams with various lengths.  

Table 3.9: 𝐼𝐿𝐷 across the length for both DSI and RHS cross sections 

Length 
(m) 

𝐼𝐿𝐷 across the length (%) 

DSI RHS 

 PrPw-PrPw FrFw-FrFw PrPw-PrPw FrFw-FrFw 

4 7.25 10.09 87.54 112.73 

6 3.1 4.33 38.32 50.04 

8 1.85 2.15 21.25 12.53 

10 1.09 1.22 13.37 8.66 

15 0.72 0.68 5.89 4.08 

20 0.44 0.38 2.73 2.28 

30 0 0 1.19 0.86 

50 0 0 0 0.2 

The table clearly shows that longer beams experience lower local deformations, making 

the solution approach the beam element solution, even if it is not possible to completely 
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eliminate the localized deformations from the shell element solutions, as shown in Fig. 3.12.  

Moreover, it can also be seen that the end fixity FrFw-FrFw results in higher levels of local 

deformations, which is also confirmed by the higher difference with the shell element and the 

beam element solutions experienced. Finally, it is evident that the RHS section has significantly 

higher local deformations when compared to the DSI section.  

The general conclusion is that when restrictions are introduced to the movement of the 

beam (due to high torsional rigidity or rotational fixities), the beam is less susceptible to have 

pure LTB, and higher localized deformations are experienced as a result. The cross-section 

deformations can further be analyzed, e.g., how they are distributed over the cross-section or 

along the length. For example, it can be observed that in most cases, the web shows more 

localized deformations compared to the flanges, etc. Since, in this research classic lateral-

torsional buckling is discussed, where non-beam-like deformations are negligibly small, the 

detailed investigation of the localized deformations is beyond the scope. Nevertheless, it is 

important to observe that such deformations can be experienced with shell FEM calculations, 

and they have noticeable influence on the buckling results. 

3.8 Summary 

In this chapter, the investigations of the effect of prebuckling deflections on lateral-

torsional buckling of single-span beams from the previous chapter have been extended for other 

support conditions. Furthermore, numerical studies were also reported in addition to the 

analytical derivations. Several observations have been made. 

Regarding the methods, the following conclusions can be drawn. 

(i) Analytical solutions for various classic end supports can be obtained in closed format 

by properly selecting the shape functions that satisfy the conditions of these supports, for both 

open and closed sections. It was found that using only one trigonometric term in the shape 

functions for the simple (i.e., fork) supports case can lead to reasonable results. However, more 

trigonometric terms are needed for other boundary conditions. 

(ii) Two numerical approaches were proposed and applied to calculate the critical 

moment of beams with considering prebuckling deflections. It was concluded that both the 

proposed iterative linear buckling analysis and the geometrically nonlinear analysis with (very) 

small imperfections lead to practically identical critical moments.  
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(iii) When numerical methods are used for the analysis of beams with prebuckling 

deflections, the loads and supports have to be carefully defined, considering that the deflections 

can occasionally be moderately large. 

(iv) The results from beam and shell finite element models are similar, but there are 

always differences between them due to the localized (i.e., non-beam-like) deformations in shell 

models. It is fair to say, therefore, that beam elements are beneficial but might be problematic 

to use them for complicated problems; on the other hand, shell models can readily be applied 

to most thin-walled beam problems, but the results are influenced by the localized deformations.  

Regarding the effect of prebuckling deflections, the most important conclusions are as 

follows. 

(i) The effect of prebuckling deflection is small (and practically negligible) if the ratio 

of the lateral and primary flexural stiffness of the beam is small (i.e., the minor-axis moment of 

inertia of the cross-section is small compared to major-axis moment of inertia). However, in 

the cases of larger stiffness ratios, the prebuckling effect is non-negligible. Thus, the 

prebuckling deflection is confirmed to have an important contribution to the differences 

between the critical moments predicted by classic analytical formulae and by nonlinear finite 

element analyses.  

(ii) The derived formulae clearly show that end supports have important effect. The 

suggestion of multiple previous papers that the prebuckling effect is always positive and the 

critical moment increase can be approximated by the 1/√1 − 𝐼𝑦/𝐼𝑥 ratio can be confirmed only 

in the case of simply supported beams with small torsional rigidity (e.g., open thin-walled 

sections). In other end support cases the prebuckling effect is different and can even be negative. 

Moreover, the prebuckling effect is modified if the torsional rigidity is significant (e.g. closed 

thin-walled sections). 

(iii) When prebuckling deformations are considered, the solution becomes length-

dependent for some support conditions, with longer beams experiencing a reduced effect of 

prebuckling deformations, an effect that doesn’t exist in classic solutions. 

Thes results of this chapter reveal an important effect of the end supports regarding the 

effect of prebuckling deformations. However, it is a common practice to also introduce 

intermediate lateral supports, which is the focus of the next chapter. Since the beam FEM 

element was shown to predict the results efficiently faster than the shell element, it will be 
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mostly used, with some shell element results for confirmation purposes. Furthermore, although 

the DSI and RHS results are different, the trends are similar, which is why further investigations 

are limited to DSI sections.  Finally, since the proposed iterative LBA method produced almost 

identical results to the GNIA, it is used for critical moment predictions, while the use of GNIA 

is limited to shape analysis (prebuckling behavior rather than the final result). 



 

Chapter 4: Effect of Intermediate Supports 

4.1 Overview 

In this chapter, beams with intermediate lateral supports are investigated. It is to 

emphasize that the term ‘intermediate lateral support’ is used throughout this chapter in a broad 

sense, meaning any support along the beam length that acts against the development of the 

secondary displacements. Accordingly, lateral support can be a restraint against lateral 

translation or twisting rotation. Both types are considered in this research. 

Intermediate lateral supports are well-documented for their ability to enhance lateral-

torsional buckling (LTB) capacity or even prevent its occurrence. The influence of lateral 

supports has been extensively studied in the literature, with numerous papers exploring different 

aspects of the topic. Some studies focus on elastic behavior, while others investigate the 

ultimate response. Research varies in its consideration of continuous versus discrete supports, 

as well as rigid versus elastic support conditions. Additionally, various cross-sectional shapes 

have been examined, with beams modeled as prismatic, stepped, or tapered. A range of 

analytical, numerical, and experimental approaches have been employed. In particular, studies 

addressing the elastic behavior of beams with discrete lateral supports and doubly symmetric I-

sections [88–101] have explored numerous aspects of this problem. 

Examples are as follows: torsional or lateral (i.e. translational) support [88-90], the 

position of the support within the cross-section (e.g., top, bottom, centroid) [91-94], position or 

number of the support along the beam length, number of supports along the beam length 

[65,95], the effect of various simple and combined loading [96], how the stiffness of the support 

affects LTB if the support is elastic or what are the support requirements to avoid LTB [97-

100], how the choice of the beam finite element affects the 𝑀𝑐𝑟 results in FEM solutions [101]. 

The provided list is not comprehensive, and, obviously, in many publications more than one 

aspect is discussed. 

Upon reviewing the literature, it was found that beams with intermediate lateral supports 

have not been discussed at all with considering the effect of prebuckling deflections. In this 

chapter, therefore, the combined effect of the intermediate lateral supports and the prebuckling 

deflections is studied. The behavior considering the combined effect can be significantly 

different from the behavior when only one of them (i.e., either the prebuckling or the lateral 

support effect) is considered.  
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Section 4.2 presents the scope of the study. Section 4.3 presents the FEM models used, 

and section 4.4 presents the results of the numerical analysis, the results show complex behavior 

which is sometimes hard to interpret. To gain better understanding, analytical derivations have 

been performed, summarized in Section 4.5. All numerical and analytical results indicate that 

the structural behavior is primarily governed by the deformation shapes that develop during 

buckling (with and/or without considering the prebuckling deflections), therefore, in Section 

4.6 the shapes are discussed along with comments on the effects of initial shape and values of 

initial imperfections. Section 4.6 discusses the practical efficiency of the intermediate supports. 

4.2 Scope 

This research focuses on thin-walled beams with intermediate lateral supports. The 

considered beam is similar to what was discussed in previous chapters (doubly symmetric, with 

a uniform moment distribution along its length, see Fig. 3.1). The middle cross-section of the 

beam is laterally supported, in one of the configurations as follows: Top flange Laterally 

Supported (TLS), Centroid Laterally Supported (CLS), Bottom flange Laterally Supported 

(BLS), and All the cross-section Laterally Supported (ALS).  

Fig. 3.1 illustrates these cases. As a reference, the No Lateral Supports (NLS) case is 

considered, too. It is to emphasize that ‘lateral support’ means that the lateral translation is 

prevented at one (or multiple) cross-sections points, see Fig. 3.1. As a result, in the case of CLS 

the twisting rotation can freely occur; in the case of TLS and BLS the twisting rotation of the 

middle cross-section is not prevented but is linked to the lateral translations; while in the case 

of ALS the twisting rotation of the middle cross-section is fully prevented. In addition to the 

intermediate support, the end support conditions' effect has been studied, in a similar way as 

discussed in previous chapters. The considered beams were similar to those from previous 

chapters.   

 

Figure 4.1: Intermediate lateral support types. 
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Beams with various lengths have also been considered, with the beam length 𝐿 having a 

wide range between 2.5m and 50m. This length range covers the entire practical lengths for the 

given cross-section shape and dimensions, with some extreme cases produced for better 

understanding the behavior. Finally, for the material, a classic isotropic steel has been 

considered, with a Young’s modulus equal to 210000 MPa, and Poisson’s ratio equal to 0.3, 

which is similar to what was considered in previous chapters. 

4.3 FEM models 

For the Finite Element Method, similarly to previous chapters, the commercial FEM 

software Ansys APDL has been used, with primarily beam elements, but shell elements have 

been employed too for validation purposes. Similar end support conditions as in Chapter 3 were 

introduced. As for the intermediate support, only the CLS can be directly applied to an FE node 

in the beam element model. To apply the other intermediate supports, a cantilever, either at the 

bottom (BLS) or the top (TLS) of the beam, or both (ALS), has been created with a length equal 

to half the depth of the beam, and the lateral support being at the end node of the cantilever 

(Fig. 4.2). 

  

Figure 4.2: Intermediate lateral supports in the beam element model. 

The shell FEM element used in this chapter is also the SHELL181 element available in 

ANSYS. The discretization, load application, as well as supports has been done in a similar 

manner as done previously. Regarding the intermediate lateral supports, they can directly be 

applied as nodal restraints against lateral translation.  

4.4 Iterative LBA Results 

4.4.1 The effect of intermediate lateral supports 

The critical moment values with and without considering the effect of prebuckling 

deflection (𝑀𝑐𝑟 and 𝑀𝑐𝑟0, respectively) have been calculated for various cases. Here, the results 

calculated for 30-m-long beams with PrPw-PrPw end supports are presented in Fig. 4.3, where 
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the critical moment increase values are plotted in terms of the 𝐼𝑦 𝐼𝑥⁄  ratios. The reference 

moment increase, is similar to what was proposed earlier (see eq. 81). 

 

Figure 4.3: Critical moment increase due to prebuckling effect, with various intermediatelateral supports. 

It can be observed that in the case of ALS type intermediate support, the moment 

increase curve closely follows the reference increase curve and/or the curve that belongs to a 

beam without any intermediate support. This means that ALS support has marginal effect on 

the moment increase (though, obviously, it has an important effect on the critical moment 

values). 

For TLS, CLS, and BLS, the effect of lateral support on the moment capacity is minimal 

when the 𝐼𝑦 𝐼𝑥⁄  ratio is small (i.e., for deep cross-sections). However, as the 𝐼𝑦 𝐼𝑥⁄  ratio 

increases, intermediate lateral support plays a significant role in altering how prebuckling 

deflection influences the critical moment. In this context, a "small" 𝐼𝑦 𝐼𝑥⁄  ratio is approximately 

0.25 for the investigated cross-sections in the cases of TLS and CLS, while for BLS, it is 

considerably lower, around 0.1 
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Nevertheless, the large moment increase that can be observed in beams with simple end 

supports and no intermediate lateral support is significantly reduced by the presence of a lateral 

support, regardless the vertical position of it (with the exception of the ALS case). It can also 

be concluded that beam FEM and shell FEM results are similar, though not identical. The 

differences are primarily due to the non-beam-like deformations in the shell model, as discussed 

in Chapter 3. Since LTB is a global buckling phenomenon, i.e., without localized deformations, 

and since beam FEM is more efficient, no shell FEM results are shown in the subsequent 

sections. 

4.4.2 Beams with intermediate lateral supports and various lengths 

Earlier studies in the literature suggested that the effect of beam length on lateral-

torsional buckling was negligible. However, Chapter 3 demonstrated that: (i) the beam length 

has a negligible effect only when the ends are simply supported and specific simplifying 

assumptions are applied in the analytical derivations; (ii) the effect remains small when the ends 

are simply supported; and (iii) a more significant influence of beam length is observed when 

the ends are partially or fully clamped. The results presented here further indicate that beam 

length has a pronounced effect when the beam is laterally supported by discrete supports, as 

illustrated in Figs. 4.4–4.5. 

It is to mention that these results are for the PrPw-PrPw end supports case. In the case 

of TLS and CLS, the plotted curves usually have two parts, suggesting that there is a change of 

behavior at a certain 𝐼𝑦 𝐼𝑥⁄ value. This 𝐼𝑦 𝐼𝑥⁄ value strongly depends on the beam length. 

Furthermore, even if the curves for TLS and CLS cases are similar in shape, their tendencies 

are different: in the case of TLS, the longer the beam, the smaller the moment increase; in the 

case of CLS the trend is opposite: the longer the beam, the larger the moment increase. 

Regarding BLS type lateral support, the right parts of the curves are visually like those 

of TLS or CLS, however, the length effect is different: the smallest moment increase values 

belong to medium length beams, while in the case of extraordinarily long or short beams the 

moment increase is larger. Moreover, in the left parts of the BLS curves it is hard to identify 

tendencies. Regarding the difference between 𝑀𝑐𝑟 and 𝑀𝑐𝑟0, the location of the lateral support 

is crucial. In the case of TLS 𝑀𝑐𝑟 is always larger than 𝑀𝑐𝑟0, hence the prebuckling deflection 

positively influences the critical moment. On the other hand, in the case of CLS and BLS, 𝑀𝑐𝑟 
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can be smaller or larger than 𝑀𝑐𝑟0, depending on beam length and the 𝐼𝑦 𝐼𝑥⁄  ratio. Occasionally, 

the moment decrease can be significant up to 20-25% when the 𝐼𝑦 𝐼𝑥⁄  ratio is around 0.4.  

  

Figure 4.4: The effect of beam length on the moment increase: TLS (left) and CLS (right). 

 

Figure 4.5: The effect of beam length on the moment increase: BLS support. 

These experiences can better be explained by the buckling shapes, as will be discussed 

in detail in later sections.  

4.4.3 The combined effects of intermediate supports and end supports 

Since in Chapter 3, the importance of end supports has been revealed, the cases of 

intermediate lateral supports were considered for various end supports. The considered end 

support cases are similar to those from Chapter 3 (PrPw-PrPw, FrFw-FrFw, PrFw-PrFw, FrPw-

FrPw, and PrPw-FrFw). Regarding the intermediate lateral supports, ALS, TLS, CLS, and BLS 

were considered. The calculations were completed by beam FEM, and the results for the 30-m-

long beams are presented here, in Figs. 4.6-4.7. The main observations are as follows. 
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In the case of ALS, the warping fixity has marginal influence, while the rotation fixity 

(about the minor axis) reduces the moment increase. If the rotation is restrained at one end only, 

the results are in between the Pr-Pr and Fr-Fr cases. In general, the results show the same trends 

as those obtained for beams without intermediate lateral support. In the case of TLS/CLS/BLS, 

the trends from both cases of end supports and intermediate lateral supports can be observed. 

Regarding the end supports: the warping fixity has little effect while the rotational fixity reduces 

the ‘increase’ due to prebuckling deformations. Regarding the intermediate lateral supports, the 

curve has two parts as discussed earlier, with the same trends and discrepancies between these 

cases.  

  

Figure 4.6: The effect of end supports: ALS (left) and TLS (right).  

  

Figure 4.7: The effect of end supports: CLS (left) and BLS (right).  

Furthermore, for each intermediate lateral support case, the cross section of which the 

‘switch’ into the other part of the curve occurs is affected by the end support, with rotational 

supports generally causing the switch to occur at cross sections with lower 𝐼𝑦 𝐼𝑥⁄  ratios. Since, 

in general, both the end fixity and the intermediate lateral support decreases 𝑀𝑐𝑟 , their 
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combined effect can cause it to be significantly smaller than 𝑀𝑐𝑟0, the maximum decrease being 

25-35%, depending on the lateral support position for the considered cases. (It is to note that 

for other beam lengths even larger moment degradation can be found.)   

4.5 Analytical studies 

4.5.1 Overview 

To have better understanding of the experienced behavior, and to validate the obtained 

results, in this Section, analytical studies are presented: closed-form expressions for the critical 

moments with and without considering prebuckling deflections are derived and discussed. The 

analytical derivations closely follow those presented in Chapter 2. The key features can be 

summarized as follows. 

The energy method is employed: the displacements are assumed, the potential energy 

function is established, and the minimum of the potential is searched for. During the derivations, 

approximations and simplifications are introduced, similarly as in Chapter 2. Furthermore, 

since the obtained formulae are usually complex, and since it is not the primary aim to provide 

formulae for all the relevant cases, the analytical solutions are derived for the PrPw-PrPw end 

supports only. To cover the intermediate lateral support cases considered, five candidates for 

the displacements are defined, as follows. 

𝑢(𝑎) = 𝑢𝑚𝑠𝑖𝑛
2𝜋𝑧

𝐿
 

𝜑(𝑎) = 𝜑𝑚𝑠𝑖𝑛
2𝜋𝑧

𝐿
 

(83) 

𝑢(𝑏) = 𝑢𝑚 (𝑠𝑖𝑛
𝜋𝑧

𝐿
+ 𝑠𝑖𝑛

3𝜋𝑧

𝐿
) 

𝜑(𝑏) = 𝜑𝑚 (𝑠𝑖𝑛
𝜋𝑧

𝐿
+ 𝑠𝑖𝑛

3𝜋𝑧

𝐿
) 

(84) 

𝑢(𝑐) = 𝑢𝑚 (𝑠𝑖𝑛
𝜋𝑧

𝐿
+ (1 +

𝜑𝑚

𝑢𝑚

ℎ

2
) 𝑠𝑖𝑛

3𝜋𝑧

𝐿
) 

𝜑(𝑐) = 𝜑𝑚 (𝑠𝑖𝑛
𝜋𝑧

𝐿
) 

(85) 

𝑢(𝑑) = 𝑢𝑚 (𝑠𝑖𝑛
𝜋𝑧

𝐿
+ 𝑠𝑖𝑛

3𝜋𝑧

𝐿
) (86) 
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𝜑(𝑑) = 𝜑𝑚 (𝑠𝑖𝑛
𝜋𝑧

𝐿
) 

𝑢(𝑒) = 𝑢𝑚 (𝑠𝑖𝑛
𝜋𝑧

𝐿
+ (1 −

𝜑𝑚

𝑢𝑚

ℎ

2
) 𝑠𝑖𝑛

3𝜋𝑧

𝐿
) 

𝜑(𝑒) = 𝜑𝑚 (𝑠𝑖𝑛
𝜋𝑧

𝐿
) 

(87) 

where 𝑢𝑚 and 𝜑𝑚 are the displacement amplitudes.  

It is to observe that (a) is point-symmetric (having two half-waves longitudinally for 

both 𝑢 and 𝜑), while the others are symmetric (having one or three half-waves longitudinally). 

Moreover, in the case of (a) and (b) both 𝑢 and 𝜑 are zero at the middle of the beam; on the 

other hand, in the case of (c), (d) and (e) shapes 𝑢 is zero only at a certain cross-section point 

while 𝜑 is non-zero at the middle of the beam. Depending on the position of lateral supports, 

some of the above shapes are kinematically possible, some not. This is summarized in Table 

4.1, where ‘Y’ identifies the possible and ‘N’ identifies the not possible shapes, respectively. 

Table 4.1: Assignment of support and shape functions.  

 (a) (b) (c) (d) (e) 

all Y Y N N N 

top Y Y Y N N 

centroid Y Y N Y N 

bottom Y Y N N Y 

To each assumed shape critical moments formulae with and without considering the 

prebuckling deflection can be derived, as summarized in the next Section. The analytical 

prediction for the lowest critical moment is the minimum among those that belong to the 

kinematically admissible shapes. For example, if the top flange is supported (TLS), (a), (b) and 

(c) shapes are possible, hence, the lowest (i.e., first mode) critical moments are obtained as:  

𝑀𝑐𝑟0
𝑇𝐿𝑆 = min(𝑀𝑐𝑟0

(𝑎)
, 𝑀𝑐𝑟0

(𝑏)
, 𝑀𝑐𝑟0

(𝑐)
) 

𝑀𝑐𝑟
𝑇𝐿𝑆 = min(𝑀𝑐𝑟

(𝑎)
, 𝑀𝑐𝑟

(𝑏)
, 𝑀𝑐𝑟

(𝑐)
) 

(88) 

The other support cases can be handled similarly. 
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4.5.2 Critical moment formulae 

It is assumed here that the cross-section is doubly symmetric and open. To obtain simpler 

formulae for the critical moment, it is reasonable to introduce the following assumptions, 

similarly as in Chapter 2:  

𝐸𝐼𝑤/𝐿2

𝐸𝐼𝑥
≅ 0   

𝐺𝐽

𝐸𝐼𝑥
≅ 0 (89) 

To make the critical moment formulae more compact, the following symbols are 

introduced: 

𝐹𝑦 =
𝜋2𝐸𝐼𝑦

𝐿2
   𝐹𝑤 =

𝜋2𝐸𝐼𝑤
𝐿2

   𝐹𝑡 = 𝐺𝐽 (90) 

while the ratio of the lateral and vertical bending stiffness is: 

𝑟𝑦𝑥 =
𝐸𝐼𝑦

𝐸𝐼𝑥
 (91) 

 

The critical moment formulae without the prebuckling deflection are listed as follows: 

𝑀𝑐𝑟0
(𝑎)

=
𝜋

0.5𝐿
√𝐸𝐼𝑦 (𝐺𝐽 +

𝜋2𝐸𝐼𝑤
(0.5𝐿)2

) 

𝑀𝑐𝑟0
(𝑎)

= √4𝐹𝑦√𝐹𝑡 + 4𝐹𝑤 

(92) 

𝑀𝑐𝑟0
(𝑏)

=
𝜋

√5 41⁄ 𝐿
√𝐸𝐼𝑦 (𝐺𝐽 +

𝜋2𝐸𝐼𝑤

(√5 41⁄ 𝐿)
2) 

𝑀𝑐𝑟0
(𝑏)

= √
41𝐹𝑦

5
√𝐹𝑡 +

41𝐹𝑤

5
 

(93) 

𝑀𝑐𝑟0
(𝑐)

= 81
ℎ

2
𝐹𝑦 + √82𝐹𝑦

√𝐹𝑡 + 𝐹𝑤 + 81 (
ℎ

2
)

2

𝐹𝑦 (94) 

𝑀𝑐𝑟0
(𝑑)

= √82𝐹𝑦√𝐹𝑡 + 𝐹𝑤 (95) 
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𝑀𝑐𝑟0
(𝑒)

= −81
ℎ

2
𝐹𝑦 + √82𝐹𝑦

√𝐹𝑡 + 𝐹𝑤 + 81 (
ℎ

2
)
2

𝐹𝑦 (96) 

Some of the 𝑀𝑐𝑟0 formulae can be interpreted by the equivalent length concept. In case 

(a), the equivalent length factors both for the lateral translation and twisting rotation are 

√1/4 = 0.5, in perfect agreement with the engineering expectation. In case (b) the equivalent 

length factors are √5 41⁄ = 0.3492, i.e., the equivalent buckling length is approx. one-third of 

the beam length. In case (d), the buckling length for the twist is equal to the length, while the 

buckling length factor for the lateral translation is √1/82 = 0.1104. In cases (c) and (e) the 

equivalent lengths cannot readily be determined. 

The critical moment formulae with the prebuckling deflection are listed as follows: 

𝑀𝑐𝑟
(𝑎)

= 𝑀𝑐𝑟0
(𝑎) √(1 − 𝑟𝑦𝑥)⁄  (97) 

𝑀𝑐𝑟
(𝑏)

= 𝑀𝑐𝑟0
(𝑏) √(1 − 𝑟𝑦𝑥) (1 +

16

25
𝑟𝑦𝑥)⁄  (98) 

𝑀𝑐𝑟
(𝑐)

=
81

ℎ

2
𝐹𝑦(1 − 𝑟𝑦𝑥) + √82𝐹𝑦(1 − 𝑟𝑦𝑥)√(𝐹𝑡 + 𝐹𝑤)(1 + 81𝑟𝑦𝑥) + 81 (

ℎ

2
)
2

𝐹𝑦

(1 − 𝑟𝑦𝑥)(1 + 81𝑟𝑦𝑥)
 

(99) 

𝑀𝑐𝑟
(𝑑)

= 𝑀𝑐𝑟0
(𝑑) √(1 − 𝑟𝑦𝑥)(1 + 81𝑟𝑦𝑥)⁄  (100) 

𝑀𝑐𝑟
(𝑒)

=
−81

ℎ

2
𝐹𝑦(1 − 𝑟𝑦𝑥) + √82𝐹𝑦(1 − 𝑟𝑦𝑥)√(𝐹𝑡 + 𝐹𝑤)(1 + 81𝑟𝑦𝑥) + 81 (

ℎ

2
)
2

𝐹𝑦

(1 − 𝑟𝑦𝑥)(1 + 81𝑟𝑦𝑥)
 

(101

) 

It can be observed that in case (a) the moment increase is identical to the reference 

increase (eq. 81). Moreover, in cases (a), (b) and (d) the critical moment increase can be 

expressed by simple formulae, however, in cases (c) and (e) the moment increase cannot be 

easily understood from the formulae. 

The analytical formulae suggest that in the case of TLS and BLS the critical moment 

and, thus, the critical moment increase is dependent on the ℎ section depth, too. Therefore, even 
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if the 𝐼𝑦/𝐼𝑥 ratios for two otherwise identical beams would be the same, the critical moment 

(and moment increase) is dependent on ℎ. However, it is easy to understand that it is not the 

section depth that really matters, but the position of the lateral support. Since in the case of TLS 

and BLS this position is plus or minus ℎ/2, that is why ℎ is directly included in the moment 

formulae. 

4.5.3 Numerical results  

To make the obtained results more understandable, and to compare the analytical and 

FEM solutions, sample numerical results are summarized in Table 4.2. The results are provided 

for two beam lengths: a short one (i.e., 5000 mm) and a long one (30000 mm). These two 

lengths are selected to cover the cases when the length is short vs too long. Four 𝐼𝑦/𝐼𝑥 ratio 

values are selected, including exceedingly small and large ones.  

In the upper part of the table, critical moment values are given to each considered shape, 

from (a) to (e). It is not surprising that the critical moments are strongly dependent on the 

assumed buckled shape. In the lower part of the table the governing (i.e., lowest) critical values 

are given, also indicating the shape to which they belong. From the lowest  𝑀𝑐𝑟0 and 𝑀𝑐𝑟 values 

the moment increases are calculated, and compared to the moment increases from beam FEM 

solutions.  

In general, the analytical results agree well with the beam model results. Considerable 

difference can be observed only if the moment increase is exceptionally large, i.e., close to 

100%, otherwise, the FEM-calculated and analytically calculated moment increase percentages 

differ by no more than 1-2%, but mostly less than 1%. Regarding the shapes in the case of ALS, 

shape (a) leads to the lowest critical moment values, both without and with considering the 

prebuckling deflection, and regardless of the member length. Shape (b) is never governing. 

Moreover, in many cases the buckled shapes without and with prebuckling deflection are 

different, i.e., there is mode switch.  

The results show that sometimes the classic LTB shape is point-symmetric, which 

switches to a symmetric one, see e.g., the CLS type; however, in other cases the classic LTB 

shape is symmetric, but can be switched to point-symmetric, see e.g., BLS type. Since the nature 

of the buckled shapes, and especially the mode switch seems to have crucial role in the value 

of moment increase, these are further discussed in Section 4.6. 
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Table 4.2: Analytical results 

𝐿 mm 5000 5000 5000 5000 30000 30000 30000 30000 

ℎ mm 500 300 200 150 500 300 200 150 

𝐼𝑦/𝐼𝑥   0.05 0.15 0.39 0.75 0.05 0.15 0.39 0.75 

𝑀𝑐𝑟0
(𝑎)

 kNm 2340 1554 1213 1071 175 161 155 152 

𝑀𝑐𝑟0
(𝑏)

 kNm 4573 2870 2092 1749 265 236 224 218 

𝑀𝑐𝑟0
(𝑐)

 kNm 90510 54440 36515 27626 2712 1785 1354 1153 

𝑀𝑐𝑟0
(𝑑)

 kNm 6562 5101 4526 4296 757 715 694 683 

𝑀𝑐𝑟0
(𝑒)

 kNm 750 642 670 749 218 290 358 407 

𝑀𝑐𝑟
(𝑎)

 kNm 2398 1688 1548 2159 179 175 197 305 

𝑀𝑐𝑟
(𝑏)

 kNm 4616 2976 2390 2896 267 244 255 361 

𝑀𝑐𝑟
(𝑐)

 kNm 19165 4678 1798 1400 695 277 173 181 

𝑀𝑐𝑟
(𝑑)

 kNm 3045 1515 1017 1099 351 212 156 175 

𝑀𝑐𝑟
(𝑒)

 kNm 763 659 687 967 184 165 142 169 

𝑀𝑐𝑟0
𝐴𝐿𝑆  kNm 2340 a 1554 a 1213 a 1071 a 175 a 161 a 155 a 152 a 

𝑀𝑐𝑟
𝐴𝐿𝑆  kNm 2398 a 1688 a 1548 a 2159 a 179 a 175 a 197 a 305 a 

increase % 2.48 8.65 27.61 101.5 2.48 8.65 27.61 101.5 

inr, FEM % 2.21 8.23 26.69 95.67 2.43 8.51 27.14 92.06 

𝑀𝑐𝑟0
𝑇𝐿𝑆 kNm 2340 a 1554 a 1213 a 1071 a 175 a 161 a 155 a 152 a 

𝑀𝑐𝑟
𝑇𝐿𝑆 kNm 2398 a 1688 a 1548 a 1400 c 179 a 175 a 173 c 181 c 

increase % 2.48 8.65 27.61 30.72 2.48 8.65 11.75 19.60 

inr, FEM % 2.21 8.23 26.62 28.78 2.44 8.48 9.93 18.36 

𝑀𝑐𝑟0
𝐶𝐿𝑆 kNm 2340 a 1554 a 1213 a 1071 a 175 a 161 a 155 a 152 a 

𝑀𝑐𝑟
𝐶𝐿𝑆0 kNm 2398 a 1515 d 1017 d 1099 d 179 a 175 a 156 d 175 d 

increase % 2.48 -2.51 -16.18 2.62 2.48 8.65 0.95 15.35 

inr, FEM % 2.21 -4.25 -16.48 2.14 2.46 8.87 0.52 14.87 

𝑀𝑐𝑟0
𝐵𝐿𝑆 kNm 750 e 642 e 670 e 749 e 175 a 161 a 155 a 152 a 

𝑀𝑐𝑟
𝐵𝐿𝑆 kNm 763 e 659 e 687 e 967 e 179 a 165 e 142 e 169 e 

increase % 1.69 2.63 2.53 29.14 2.48 2.76 -8.23 11.66 

inr, FEM % 1.6 2.63 2.91 29.55 2.44 1.42 -8.96 10.39 

4.6 Shape analysis 

4.6.1 Mode switch - LBA 

To better understand the mode switch, the results are first analyzed in detail, focusing 

on when the mode switch occurs and how the buckled shapes differ depending on whether the 
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switch happens or not. The results are visualized in Fig. 4.8, where PP means that the buckling 

mode is point-symmetric both without and with the prebuckling effect. Similarly, SS means 

that the buckling mode is symmetric both without and with the prebuckling effect. PS identifies 

those cases when the mode is point-symmetric without the prebuckling deflections, but 

symmetric if the prebuckling deflection is considered; i.e., PS identifies the cases when mode 

switch happens. (Theoretically, SP could happen, too, but such a case has not been found among 

the investigated ones. Moreover, since the mode switch does not occur in the case of ALS, this 

intermediate support type is not discussed.) 

 

Figure 4.8: Overview of buckling shapes (left: TLS, middle: CLS, and right: BLS). 

Looking at Fig. 4.8, it can be observed that the parts of the moment increase curves in 

Figs. 4.4-4.5 can be assigned to characteristic buckling shape scenarios. For example, in the 

cases of TLS and CLS, the left parts of the curves belong to PP, while the right (quasi-parabolic) 

parts of the curves belong to PS. The 𝐼𝑦/𝐼𝑥 threshold where the two lines join, i.e., where the 

behavior changes from PP to PS, is dependent on the length: the larger the length in the case of 

TLS, or the shorter the length in the case of CLS, the smaller the 𝐼𝑦/𝐼𝑥 threshold value, which 

is in accordance with the results obtained in section 4.4.2. 

The most complex case however is BLS (which was also observed in section 4.4.2). If 

the beam is (at least, moderately) long and the 𝐼𝑦/𝐼𝑥 is (moderately) large, then the behavior is 

PS, characterized by the quasi-parabolic curve parts in the moment increase curves. When the 

beam is extremely long and 𝐼𝑦/𝐼𝑥 is small, the behavior is PP, characterized by the quasi-linear 

increasing line. (It seems that for beams that are too long, longer that 25m for the considered 

cross sections, the behavior of the BLS intermediate support becomes similar to that of the CLS 

case.) For shorter beams, the behavior is SS, i.e., the buckling mode is symmetric either the 
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prebuckling deflection is considered or not for low 𝐼𝑦/𝐼𝑥 ratios (if the beam is too short, all 

cross sections have the SS behavior). In these SS cases, the tangent of the line segment (of the 

moment increase curve) is proportional to the inverse of the beam length: the larger the length, 

the smaller the tangent. In most of the lengths the tangent is negative, but it becomes positive 

if the beam is short enough.  

The above explanation is further illustrated and justified by Figs. 4.9-4.10., for TLS, 

CLS, and BLS, respectively. The composition of selected moment increase curves is shown, 

obtained by considering higher buckling modes from the buckling analyses. It can be observed 

that the PP curves are approximately identical to the reference moment increase curve, that is 

(i) they are negligibly dependent on the length, and (ii) they are independent of the vertical 

position of the lateral support. The PS and SS curves are dependent on the length and the 

position of the lateral support.  

 

Figure 4.9: Moment increase curves for the various buckling shape scenarios: TLS (left) and CLS (right). 

 

Figure 4.10: Moment increase curves for the various buckling shape scenarios: BLS. 



 

76 

Moreover, the threshold values of the 𝐼𝑦/𝐼𝑥 ratio can be found as the intersection of the 

curves that belong to the various scenarios. However, the final moment increase curve is not 

necessarily the lower envelop of the curves, since the final curve is determined by the lowest 

𝑀𝑐𝑟0 and 𝑀𝑐𝑟 values, not by the lowest moment increase values (see e.g., the BLS, L = 10 m 

case). Therefore, from the results it can be concluded that the moment increase due to the 

prebuckling deflections is strongly determined by the buckled shapes, which are dependent on 

the beam length and the vertical position of the lateral support. 

4.6.2 Mode switch - GNIA  

In this Section, GNIA results are presented. The calculations are performed by FEM, 

using the same models as used in the LBA. The initial imperfect shape of the beam is identical 

to an eigen-shape from a classic LBA (without prebuckling deformation). In most cases the first 

eigen-mode is employed, though the effect of considering higher eigen-modes is also studied 

(see Section 4.6.3). Unlike when GNIA is applied in design, here, GNIA is applied to 

approximate the elastic critical moment, hence, the role of the initial imperfection is to disturb 

the perfect straight shape in order to allow the FEM to find the secondary equilibrium path. 

Accordingly, in most of the presented cases the initial imperfection is extremely small, the 

amplitude being 0.001 mm, though the effect of applying larger imperfection amplitudes is also 

studied (see Section 4.6.4).   

It is to mention that the GNIA can predict the critical moment, as discussed in Chapter 

3. However, since the 𝑀𝑐𝑟 values calculated by the iterative LBA or by GNIA are practically 

identical, it is used here for the purpose of the shape analysis only, by showing how the initial 

shape is transformed into the final buckling shape (although some 𝑀𝑐𝑟 results are presented, 

they are just for understanding and explaining the behavior) . This transformation is illustrated 

by Figs. 4.11-4.16. In all these figures lateral translations of the cross-section centroids (UX) 

and twisting rotation of the cross-sections (ROTZ) are plotted along the member length, at 

selected load levels, with ‘𝑀𝑐𝑟𝑜’ identifying the initial shape calculated from classic LBA.  

It is to highlight that all the shape curves are scaled to have the maximum (in absolute 

value) equal to 1; without this scaling the shapes of early sub-steps would mostly be invisible 

due to the differences in the values of deflections at different load levels, as can be seen in Fig. 

4.11. It is to note that, obviously, the presented secondary displacements occur together with 

the primary displacements, which are practically linearly proportional to the load intensity, and 

not shown in these plots.)   
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Figs. 4.11-4.13 show three cases of PS behavior. All are calculated for the same length 

and cross-section, however, the position of the lateral support varies. In all these three cases the 

initial shapes are the same, however, the final shapes are different. More precisely, the final 

ROTZ shapes are still similar, all being (approximately) a half sine wave. The UX in TLS and 

BLS is characterized by a single lobe, but one is positive the other is negative (i.e., the centroid 

moves in opposite directions); meanwhile, in CLS the UX has three lobes since the centroid at 

the middle is restrained against lateral movement. So, even if the shapes follow the PS scenario, 

the actual shapes are dependent on the position of the discrete lateral support, which explains 

the differences in the trends between these three cases (even for the same PS scenario). 

 

Figure 4.11: Deformed shapes from GNIA: TLS, L=10m, H=180mm, PS behavior 

  

Figure 4.12: Deformed shapes from GNIA: BLS, L=10m, H=180mm, PS behavior 



 

78 

  

Figure 4.13: Deformed shapes from GNIA: CLS, L=10m, H=180mm, PS behavior 

Fig. 4.14 shows the SS behavior, which in the investigated cases occurs only with BLS. 

As the plots show, the distribution of UX and ROTZ remains unchanged during the loading 

process. Partially similar phenomenon can be observed in the PP scenario, such as in the TLS 

case, shown in Fig. 4.15.  

However, even if the LBA results suggest that CLS exhibits PP, the real behavior is quite 

different, as can be seen from Fig. 4.16. While UX hardly changes during the process, ROTZ 

does. The initial shape (of ROTZ) is point-symmetric with a full sine-wave, which first 

transforms into a symmetric one (characterized by a single lobe, but clearly not a half-sine 

wave,) then transforms back to point-symmetric again (full sine-wave), but opposite to the 

original one. This behavior, which could be identified as PSP, seems to be characteristic to 

CLS. 

 

Figure 4.14: Deformed shapes from GNIA: BLS, L=5m, H=400mm, SS behavior 
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Figure 4.15: Deformed shapes from GNIA: TLS, L=5m, H=500mm, PP behavior 

 

Figure 4.16: Deformed shapes from GNIA: CLS, L=5m, H=500mm, PSP behavior 

4.6.3 The effect of initial shape 

Though in certain cases the initial shape and the final shape are almost identical, i.e., the 

initial twist and out-of-straightness are simply amplified during the analysis, in many other 

cases the shape is significantly modified. This suggests that the initial shape itself is not 

crucially important. To prove this, several cases have been recalculated using the second or 

third (or even higher) classic buckling modes as initial shapes. (Nevertheless, the initial 

amplitude has been kept the same very small value.) Sample results are shown in Figs. 4.17-

4.18 and 4.19-4.20, for TLS and BLS, respectively. As the plots show, though the shape 

transition of the beam is significantly influenced by the initial shape, the final shapes are hardly 

affected. (Note, the same cases with starting from the first mode are shown in Figs. 4.11 and 

4.12 for TLS and BLS, respectively.) 
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Figure 4.17: Deformed shapes from GNIA: TLS, L=10m, H=180mm, initial shape: second mode 

 

Figure 4.18: Deformed shapes from GNIA: TLS, L=10m, H=180mm, initial shape: third mode 

 

Figure 4.19: Deformed shapes from GNIA: BLS, L=10m, H=180mm, initial shape: second mode 
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Figure 4.20: Deformed shapes from GNIA: BLS, L=10m, H=180mm, initial shape: third mode 

The results suggest that the shape always converges to the same final shape regardless 

the initial shape. However, the initial shape determines how fast the load-displacement curve 

converges to the secondary equilibrium path, and it slightly affects the predicted 𝑀𝑐𝑟value, too, 

as illustrated in Fig. 4.21. For example, in the actual case of TLS, mode 2 provides the fastest 

convergence and the largest 𝑀𝑐𝑟 (out of the first three modes), while in the actual case of BLS 

it is mode 3 that provides the fastest convergence and the largest 𝑀𝑐𝑟.  

Nevertheless, it can be concluded that if the initial imperfection is extremely small, then 

(i) the final buckling shape and the associated critical load value are insensitive to the actual 

initial shape, (ii) it is not necessarily the first mode that provides the best numerical performance 

in finding the final buckling shape.    

 

Figure 4.21: Load-displacement curves form GNIA: TLS (left) and BLS (right), L=10m, H=180mm 
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4.6.4 The effect of initial amplitude 

Moreover, Figs. 4.21-4.24 show the final shapes together with the initial one for various 

amplitudes. As the plots shows, in certain cases the final shape is hardly affected by the initial 

amplitude, while in other cases it does. This observation can readily be connected to the 

‘amount’ of shape transition involved (i.e., how much energy it takes to transition into the other 

mode). In certain cases, the initial shape hardly changes during the analysis, hence, it hardly 

matters how large the initial amplitude is, the FEM algorithm will easily find the secondary 

equilibrium path. However, in other cases the beam exhibits significant shape transition to reach 

its final shape; if the initial amplitude is large(r), the shape cannot fully be transformed before 

reaching the secondary equilibrium path.  

 

Figure 4.21: Load-displacement curves form GNIA for various imperfection values: TLS, L=10m, H=180mm 

 

Figure 4.22: Load-displacement curves form GNIA for various imperfection values: CLS, L=5m, H=500mm 
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Figure 4.23: Load-displacement curves form GNIA for various imperfection values: BLS, L=5m, H=400mm 

 

Figure 4.24: Load-displacement curves form GNIA for various imperfection values: TLS, L=5m, H=500mm 

Regarding the resulting 𝑀𝑐𝑟 values, they also vary sometimes depending on the value of 

initial imperfection. Table 4.3 shows the 𝑀𝑐𝑟 values for different intermediate support cases 

and with having various initial imperfection values. It is observed that with higher initial 

imperfections, lower 𝑀𝑐𝑟 values result from the GNIA. Furthermore, it makes it more difficult 

to selecct a precise 𝑀𝑐𝑟  value. This makes it important to select the values of initial 

imperfections correctly in order for the results to be comparable with the LBA or the analytical 

solutions. It can be seen from Table 4.3 that the ‘decrease’ in 𝑀𝑐𝑟 due to larger imperfection 

values, is slightly affected by the type of intermediate supports. 

Another interesting observation was made. In some cases (especially in TLS), if the 

initial imperfection is further increased, the 𝑀𝑐𝑟 value starts to increase again. Table 4.4 shows 

the results of further increasing the imperfection values, which was done on the TLS case, with 

L = 10 m, and H = 500 mm. In this case, the value of 𝑀𝑐𝑟 drops to 78.7% at 10 mm of initial 
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imperfection, but then increases again to reach 127.3% at 70 mm of initial imperfection, and 

then starts to decrease again by further increasing the initial imperfection.  

Table 4.3: Increase in Mcr values from GNIA with various imperfection values for different mode switch 
cases  

Imperfection TLS – 10 – 180 (PS) 

% of Mcr  

CLS – 5 – 500 (PSP) 

% of Mcr 

BLS – 5 – 400 (SS) 

% of Mcr 

TLS – 5 – 500 (PS) 

% of Mcr 

0.0001 100 100 100 100 

0.001 100 100 99.7 100 

0.01 99.5 99.8 99.3 100 

0.1 99.1 99.5 93.8 95.4 

1 96.1 95.5 90.1 90.6 

10 84.1 67.2 62.3 69.9 

 

Table 4.4: 𝑀𝑐𝑟 for varying imperfection values for TLS, L = 10 m, H = 500. 

Imperfection Mcr % of Mcr by LBA 

0.0001 722 100 

1 722 100 

10 568 78.7 

15 721 99.8 

50 808 111.9 

70 919 127.3 

100 793 109.8 

125 710 98.3 

 

Figure 4.25: Load displacement cureves for TLS, L = 10 m, H = 500. 

This phenomenon can be explained by a higher buckling mode, meaning that increasing 

the imperfection value to a certain level makes it easier for the beam to ‘switch’ into the higher 
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buckling mode. This was confirmed by the actual observed shapes, as they switch into a higher 

mode (but never fully) this is why the 𝑀𝑐𝑟 value never actually reaches the value of the second 

buckling mode, but starts to decrease again after a certain imperfection value. Figure 4.25 shows 

the load displacement curves of this case. It can be seen that if the imperfection value is too 

small, the algorithm is able to capture both the first and second buckling modes. 

4.7 Efficiency of lateral supports  

Intermediate lateral supports are widely used in structural engineering constructions. 

They are known to enhance the LTB behavior; occasionally, they can effectively prevent LTB 

type instability. It is also common knowledge that the position (e.g., at the top or bottom flange, 

etc.) and type (e.g., continuous or discrete, or, against twist and/or lateral translation, or, rigid 

or elastic, etc.) of the intermediate support strongly influences its efficiency. Based on the here-

presented results, however, a further aspect is revealed: the efficiency of intermediate supports 

is highly dependent on whether the prebuckling deflections are disregarded or considered.  

To illustrate this, Figs. 4.26-4.28 show the efficiency for three sample cases: two simple 

supported beams with different lengths and a clamped-clamped (i.e., minor-axis rotation and 

warping prevented) beam, all with various 𝐼𝑦/𝐼𝑥 ratios and various discrete lateral supports. 

The efficiency is expressed by the 𝑀𝑐𝑟0/𝑀𝑐𝑟0(𝑁𝐿𝑆) or 𝑀𝑐𝑟/𝑀𝑐𝑟(𝑁𝐿𝑆) ratio, where 𝑀𝑐𝑟0 and 𝑀𝑐𝑟 

are the critical moments with the lateral supports, while 𝑀𝑐𝑟0(𝑁𝐿𝑆) and 𝑀𝑐𝑟(𝑁𝐿𝑆) are the critical 

moments without any lateral intermediate support.  

In these actual samples, if the prebuckling effect is disregarded, then the actual benefit 

of the lateral support is dependent on the beam configuration, but almost any of the considered 

lateral supports are equally efficient except for short(er) PrPw-PrPw beam with BLS support. 

If the prebuckling effect is considered, the efficiency of the lateral support is more diverse. As 

expected, ALS is the most efficient and BLS is the least efficient, but the actual 𝑀𝑐𝑟/𝑀𝑐𝑟(𝑁𝐿𝑆)  

value is strongly dependent on the problem parameters: it can be as high as 3.3, but in many 

cases, it is hardly greater than 1.  

The general observation, therefore, is that though in some cases the efficiency of the 

lateral support is the same whether the prebuckling effect is considered or not, more often than 

not the calculated efficiency is rather different if based on the results of classic LBA or if based 

on the results of a more advanced analysis including the effect of prebuckling deflections. 
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Figure 4.26: Ratio of critical moments with and without intermediate support for Mcr0 (left) and Mcr (right), for 

L = 5 m, PrPw-PrPw. 

 

Figure 4.27: Ratio of critical moments with and without intermediate support for Mcr0 (left) and Mcr (right), for 

L = 30 m, PrPw-PrPw. 

 

Figure 4.28: Ratio of critical moments with and without intermediate support for Mcr0 (left) and Mcr (right), for 

L = 30 m, FrFw-FrFw. 
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In the reported research the LTB behavior is investigated using numerous assumptions 

and simplifications, such as: the material is perfectly elastic and homogeneous, the effect of 

imperfections is disregarded, only classic beam-type displacements are assumed (i.e., the effect 

of shear of localized plate bending deformations are disregarded), etc. Real beams are affected 

by all these factors. Still, it is a common notion that the results from an idealized elastic analysis 

are representative, even though approximate, if the beam cross-section is compact and the beam 

is slender. In other words, it is a reasonable expectation that the 𝑀𝑐𝑟 values should approximate 

the real LTB capacity in the case of locally compact but globally slender beams. However, the 

presented results prove that the critical moment value is strongly affected whether the 

prebuckling deflections are considered or not: depending on the structural configuration the 

𝑀𝑐𝑟  can be significantly larger than 𝑀𝑐𝑟 , but can also be significantly smaller, too, the 

𝑀𝑐𝑟/𝑀𝑐𝑟0 ratio being in the 0.6-2.0 range.  

Similar conclusions can be reached observing the efficiency of the intermediate lateral 

supports. The calculated efficiency of the lateral support is sometimes significantly different 

depending on whether the prebuckling effect is considered or not. For example, in the FrFw-

FrFw case shown in Fig. 4.28, for large and moderately large 𝐼𝑦/𝐼𝑥 ratios, the efficiency of BLS 

is 50% and 0% without and with considering the prebuckling effect, respectively; however, the 

efficiency of ALS is 50% and 80% without and with considering the prebuckling effect, 

respectively. In other words, the classic analysis predicts the same 50% moment increase for 

both BLS and ALS, but a more realistic prediction is 0% for BLS and 80% for ALS. Again, the 

conclusion is that it can cause a drastic difference in the elastic results whether the prebuckling 

effect is considered or not. The results, therefore, suggest that if the critical moment is 

calculated by a classic LBA, the obtained result is not necessarily a good predictor of the 

capacity even if the behavior is elastic. 

4.8 Summary 

In this chapter, lateral-torsional buckling of simple beams with intermediate discrete 

lateral supports were investigated. Four variants of the lateral supports were considered, 

depending on the vertical position of the lateral support, and whether the twisting rotation is 

restrained or not. The behavior was studied by finite element analyses, using both beam and 

shell finite elements. Additionally, analytical solutions were also derived. Several observations 

were made: 
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Excellent agreement was found between the results from the derived analytical formulae 

and the finite element buckling analysis if beam finite elements are used. When the beam is 

modelled by shell finite elements, the results are still in reasonable agreement, though the effect 

of non-beam-like deformations (primarily: localized plate bending and shear deformations) is 

necessarily included in the result, causing noticeable differences. 

Both the numerical results and the derived analytical formulae clearly show that the 

intermediate discrete lateral support has an important effect on how the prebuckling deflections 

modify the critical moment. In the case of beams with intermediate lateral support, the 

suggestion of multiple previous papers that the prebuckling effect is always positive and the 

critical moment increase can be approximated by the 1/√1 − 𝐼𝑦/𝐼𝑥 ratio can be justified only 

if the intermediate support prevents both the lateral translation and the twisting rotation. In other 

cases, the moment increase is (or can be) significantly smaller; in fact, the increase is frequently 

negative, i.e., the prebuckling deflection can decrease the critical moment. 

It was found that the discrepancies between these cases can be explained by the buckling 

shapes, meaning that the buckling shape can be different when considering the prebuckling 

deformations, suggesting a ‘mode switch’ that occurs sometimes during the loading of the 

beam. To better understand the behavior, geometric GNIA was performed, too. This type of the 

analysis reveals how the final buckling shape is formed as the load gradually increases.  

The main observations are as follows: (i) the presence of a mode switch is confirmed, as 

the beam starts with the shape of LBA without prebuckling deformations, it can gradually 

switch into a different shape (ii) regardless of the initial shape, the beam will always switch to 

the same final shape if initial imperfection values are small, however, the rate of which it 

converges can vary, and the 𝑀𝑐𝑟  value can be slightly affected (iii) the value of initial 

imperfection can significantly affect the 𝑀𝑐𝑟 value, as well as the resulting buckling shape  

Finally, the practical use of intermediate supports was investigated. If the prebuckling 

deformations are not considered, the discrepancies in 𝑀𝑐𝑟 between the different cases is limited. 

However, when considering prebuckling deformations, significant discrepancies can be 

observed. In some cases, the increase in 𝑀𝑐𝑟 due to intermediate support can be little to none, 

while in other cases it can be up to 100%. The buckling mode is the main factor that affects 

these results.



 

Chapter 5: Conclusions and Thesis Statements 

5.1 Conclusions 

This research investigates the effect of prebuckling deformations on the lateral torsional 

buckling of thin-walled steel beams. Classical solutions which are still used nowadays neglect 

the prebuckling effects, and although it was shown in previous studies that it can have a 

significant influence on the solution if the beam is not too deep, the topic is still far from being 

fully studied, with only a handful of papers investigating it, which are mostly limited to the 

most basic case, a doubly symmetric single span beam with forked supports, constant moment 

distribution, and no intermediate lateral supports.  

Upon reviewing the available literature on the topic, discrepancies were found in the 

given analytical solutions for the seemingly same case. These discrepancies were found to be 

due to several factors during the analytical solution, chapter 2 provided a detailed overview of 

the analytical derivations for the basic case, showing when it’s appropriate to do certain 

simplifications and giving the most suitable formulae. The effect of torsional rigidity is also 

considered in chapter 2, providing analytical solutions for open and closed doubly symmetric 

steel sections. 

Chapter 3 investigates the effect of end supports. Various closed formed solutions are 

given for 5 different end support conditions. Numerical FEM solutions are also introduced using 

both beam and shell elements, and using two types of analysis, the GNIA, and a proposed 

iterative LBA process. The results of the various methods were found to be in good agreement, 

with some discrepancies found due to (i) the analytical solution needing more terms in the shape 

functions in some boundary conditions, and (ii) the localized deformations in the shell element. 

More refined analytical solutions are given, and a simple local deformations index was 

proposed. It was found that the effect of prebuckling deformations is highly influenced by the 

end supports, and it is even negative in some cases unlike what is suggested in the literature. 

The next step in the research was investigating the effect of intermediate lateral supports. 

Using the methods developed earlier, several types of intermediate supports were considered: 

the lateral restrain at the top, bottom, or centroid of the beam, as well as everywhere on the 

section, preventing the torsional rotation as well. The results showed high discrepancies 

between these different types of supports, with some of them increasing the critical moment by 

up to more than 80% when accounting for prebuckling deformations, while others cause a 
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decrease that can be up to 40%. These discrepancies were also found to be present in the same 

case, when changing some parameters, like the length, cross section, or end supports.  

To understand the causes for these differences, a study on the buckled shapes was 

conducted using LBA (classical or iterative), where it was found that sometimes, the buckled 

shapes can differ within the same case depending on whether the prebuckling deformations are 

considered or not, as sometimes they are symmetric if classical solutions are used, but point-

symmetric if prebuckling deformations are considered. This suggests a ‘mode switch’ that 

happens during the loading of the beam before it reaches the buckling load. To confirm that, 

non linear (GNIA) analysis study was conducted with carefully observing the buckled shape 

for various sub-steps. The mode switch was confirmed and studied in detail. 

Although this study provides valuable insights into the effect of prebuckling 

deformations on the LTB of beams considering various factors, the topic still needs further 

investigations to fill the gaps. For instance, other boundary conditions can be considered, such 

as cantilevers, fixed beams at both ends (about the primary rotations), or multi-span beams. 

Other loading conditions can also be investigated, such as varying moment distributions, or 

concentrated forces. Other types of intermediate supports can be studied, such as lateral 

restrains at varying heights, at different locations across the length, or multiple lateral supports. 

Other types of buckling can also be considered, such as combined global and local buckling. 

These factors and others are intended as topics for future studies. 

5.2 Thesis Statements 

 Thesis 1 

I have conducted an analytical study on the lateral torsional buckling of beams 

considering the prebuckling effect. I have summarized most of the available analytical formulae 

in the literature, highlighting the variations between them (even for the seemingly same case), 

showing that the solution is far from unambiguous. I rederived the different formulae, 

identifying the important factors in the analytical derivations which influence the critical 

moment formula. By doing so, I explained the differences between the formulae found in the 

literature. Furthermore, by doing the analytical study, I showed that several further variants can 

be derived (but not all of them are accurate). I defined the requirements for the approximations 

and when it is appropriate to do them. I have distinguished between cross sections with high 

and low torsional rigidities in the analytical derivations. By doing so, I have shown that the 
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torsional rigidity of the section has an important, but unexplored effect, that is why open and 

closed section beams are differently affected by the prebuckling effect. 

 Thesis 2 

I have conducted a numerical study for the validation of the analytical solutions. For that 

purpose, I developed beam and shell finite element models, which are suitable for considering 

the prebuckling deformations. I pointed out some important modelling aspects that have (or 

might have) significant influence on the results when LTB with prebuckling effect is studied. I 

have shown that classical models used for LBA might not be suitable for an FEM analysis that 

consider prebuckling deformations, and special considerations must be made in order for the 

results to be comparable with the analytical solutions (namely: loading application, supports in 

beam and shell FEM models, and nonlinear static analysis in iterative LBA). 

I have used two types of analysis for the numerical solutions. First, I proposed an 

iterative LBA methods that alternate between static analysis for inducing prebuckling 

deformations, and linear buckling analysis that obtain a critical moment value. I have shown 

that convergence occurs, leading to critical moment value that’s close to the analytical 

solutions. I have shown that using a linear analysis in the static analysis step produces error, 

and non-linear analysis lead to better results. Then, I have conducted GNIA with very small 

imperfections, leading to critical moment values that are very close to the results from iterative 

LBA method, validating the use of such an algorithm. I have compared the shell and beam FEM 

methods, highlighting that the effect of non-beam-like deformations is significantly magnified 

when prebuckling deformations are considered. 

 Thesis 3 

I have considered other boundary conditions than the simple forked support case which 

was mostly discussed in the literature. I have derived closed formed analytical solutions for 

various boundary conditions, and I have created numerical models for these different boundary 

conditions cases.  I have conducted a parametric study using the proposed analytical and 

numerical solutions. I have compared the results from all the proposed methods accounting for 

the combined effects of (i) prebuckling deformations, (ii) boundary conditions, and (iii) 

torsional rigidity. 

Using the results, I have shown that the different methods used agree to an acceptable 

degree, validating the derived analytical solutions for most cases, with some inaccuracies, 
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especially when rotational fixities are introduced. I have shown that the source of these 

inaccuracies is the approximative nature of the shape functions used. I have derived enhanced 

solutions based on more accurate shape functions, giving more accurate results. I have shown 

that the end supports have a significant effect on how the prebucking deformations influence 

the solution, highlighting that proposed formulae in the literature are only valid for the simple 

forked support case.  

I have shown that unlike what is suggested by literature, the effect of prebuckling 

deformations is not always positive, and can be negative in certain support cases. I have shown 

that the length of the beam influences the solution in some boundary condition cases, which is 

present in the FEM solution, but can only be captured in the analytical solution if the enhanced 

shapes are used. I have shown that longer beams require more terms in the shape functions to 

produce accurate results. I have shown that the effect of non-beam-like deformations in the 

shell element solution is further heightened when fixity is introduced to the twisting rotation at 

the end of the beam. 

 Thesis 4 

I have considered the intermediate lateral and torsional supports, I have derived 

analytical closed formed solutions for the critical moment of beams considering prebuckling 

deformations for four cases: (i) lateral support at the top flange (ii) lateral support at the bottom 

flange (iii) lateral support at the centroid, and (iv) lateral support with twisting rotation fixity. I 

have created numerical models for these cases and conducted a parametric study using the 

various methods. 

Using the results, I have shown that the location of the intermediate support has a drastic 

effect on how the prebuckling deformations affect the solution. The differences can vary 

between a significant increase in the critical moment to a significant decrease (compared to the 

case when prebuckling deformations are not considered) depending on which kind of 

intermediate support is used. I have shown that the reason for these discrepancies is in the 

buckling shape, which vary depending on the type of intermediate support. I have shown using 

both the LBA and the analytical solutions that the buckling shape can differ depending on 

whether or not the prebuckling deformations are considered, suggesting the presence of a ‘mode 

switch’ as the load increases. 

I have further investigated the mode switch behavior using the GNIA method, plotting 

and observing the transitioning from one mode to another during the non-linear analysis, and 
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confirming the mode-switch phenomena. I have investigated the effect of the initial shape and 

initial imperfection value on the mode-switch, showing that if the initial imperfection value is 

small, the beam will always switch to the same shape regardless of the initial shape, but larger 

initial imperfection values affect the final shape as well as the critical moment value. Finally, I 

have studied the practical effectiveness of the use of intermediate lateral supports, highlighting 

the variations between little to know advantage, to high advantage, depending on the type of 

the intermediate support, the cross section, and length of the beam 
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