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1. Introduction 

Classical solutions for lateral torsional buckling (LTB) consider a perfect beam 

when the buckling occurs, neglecting prebuckling deformations. However, previous 

studies [1-13] show that the primary (in-plane) deflections might influence the solution 

of LTB. There seems to be a consensus in the available literature that the prebuckling 

deformations increase the critical moment, and that the increase is dominantly 

determined by the lateral rigidity of the beam. However, available literature is not too 

numerous and is limited to the most basic case (forked supports with open cross 

sections). Furthermore, discrepancies can be found in the given formulae. This research 

is focused on understanding the role of prebuckling deflections on LTB in depth by 

understanding the details of derivations done in the literature and extending on it by 

investigating the role of torsional rigidity [AGA1, AGA4], end supports [AGA2, 

AGA5, AGA6], and intermediate lateral supports and beam length [AGA3, AGA7]. 

2. The basic case: analytical derivations 

The first case to be considered is a beam with simple forked supports, uniform 

moment distribution, and no intermediate lateral supports. This is referred to as the 

“basic case”, which is mostly discussed in the literature. First, a literature review on the 

available literature was conducted, and several observations were made. For instance, 

it was found that most papers agree that the increase due to prebuckling deflections can 

be expressed by the 1/√1 − 𝐼𝑦/𝐼𝑥 factor, with 𝐼𝑦  being the weak axis, and 𝐼𝑥 the strong 

axis moment of inertia. More precise formulae are given in several papers, and there are 

small discrepancies between these formulae. Furthermore, it is implicitly assumed or 

explicitly stated in most papers that the provided formula to consider the prebuckling 

effect is generally valid. Discrepancies can also be found in the underlying basic 

mechanical-mathematical formulae. Finaly, there is hardly any attempt to use general 

numerical methods such as the shell finite element method.  

The derivation is based on the energy method, where the total potential is 

expressed as the sum the strain energy, and the work of the stresses on the nonlinear 

strains. To define these terms, the first step is to define the shape functions. In case of 

LTB, the secondary displacements are the lateral translation and twisting rotation, 𝑢 and 

𝜑 (Fig. 1). The shape functions must satisfy the boundary conditions. The assumed 

displacement functions are simple half sinewaves, and the primary displacements can 

be expressed as a parabolic function (Fig. 1). 
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Figure 1: Coordinate system, displacements. 

In the derivation, a transformation between the deformed and undeformed 

coordinate systems is needed to obtain the curvatures on the deformed geometry of the 

beam. One of the sources of discrepancies in the literature stems from the assumed 

transformation matrix, as several variants can be derived depending on what terms are 

eliminated or kept. Eliminating higher terms simplify the solution, but these must be 

chosen carefully not to affect the accuracy of the resulting formula. After determining 

the proper transformation matrix, the expressions for curvatures are established, 

depending on which transformation matrix is used, several curvature expressions can 

be derived as well. Again, the resulting expression for strain depends on the assumed 

transformation matrix, as well as approximations that can be made.  

Depending on the simplifications employed in the derivations, several options 

for the critical moment formula can be identified (denoted as ‘a’, ‘b’, ‘c’, etc.). Another 

source of discrepancies is the section-related approximations. Four types of 

approximations are introduced here, referred to as ‘open’ and ‘open-simple’ for open 

cross sections (such as the doubly symmetric I section, DSI), and ‘closed’ and ‘closed 

simple’ for closed cross sections (such as rectangular hollow section, RHS). Even with 

these approximations, the final equation is of 4th-degree. However, in the literature the 

higher-degree terms are always eliminated, and the critical moment is calculated from 

a simplified quadratic equation. Fig. 2 shows the solutions for the various resulting 

formulae for open and closed cross sections, respectively. It can be concluded that the 

introduced simplifications can lead to a significant scatter, hence the derivations should 

be done carefully to avoid errors. Later, further analytical derivations are performed for 

different end supports and intermediate supports. Since the approximations established 

by [3] were found to be suitable, they are used for these further studies. 
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Figure 2: Moment increase due to prebucking deflection: open sections (left) and closed 

sections (right). 

3. The effect of end supports 

In this Chapter, single-span prismatic and originally straight girders are 

analyzed with doubly symmetric steel cross-sections. The beam is subjected to uniform 

moment about the major axis, and various boundary conditions have been considered. 

The critical moments without and with considering the in-plane deflections have been 

calculated (leading to 𝑀𝑐𝑟0 and 𝑀𝑐𝑟 , respectively). Analytical and numerical methods 

have been applied, as follows: (i) analytical formulae derived in Chapter 2, as well as 

further formulae for other boundary conditions derived in this chapter, (ii) Linear 

Buckling Analysis (LBA) analysis by beam FEM, (iii) LBA by shell FEM, (iv) 

Geometrically Nonlinear Analysis with Imperfections (GNIA) by beam FEM, and (v) 

GNIA by shell FEM.  

Various classic boundary condition combinations have been considered. The 

main two variables are the rotation and warping. The notation used is: ‘P’ indicates a 

pinned/free condition, and ‘F’ indicates a fixed condition, while ‘r’ and ‘w’ specify 

whether the fixity is for rotation (about the minor axis y) or warping. For example: PrPw 

indicates an end where both the rotation and warping are free to occur, while PrFw 

indicates a free rotation and fixed warping, etc. The longitudinal translation is always 

prevented at one end, and the rotation about the major axis x is always free. 

For the dimensions, in the case of DSI, the flange width is 200 mm, the flange 

and web thicknesses are 20 and 12 mm, respectively, while the total section depth (out-

to-out) is a variable so that the 𝐼𝑦 𝐼𝑥⁄  ratio would be in the range of 0.05 to 0.75. In the 

case of RHS, the section width is 150 mm, the flange and web thicknesses are 30 and 
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10 mm, respectively, the total section depth varies, so that the 𝐼𝑦 𝐼𝑥⁄  ratio would be in 

the range of 0.03 to 0.75. For the material, a classic isotropic steel is considered, with a 

Young’s modulus equal to 210000 MPa, and Poisson’s ratio equal to 0.3. 

• Analytical solutions 

Critical moment formulae are derived for each support condition, both for open 

and closed cross sections. In the derivation, options ’open-simple‘ and ‘closed-simple’ 

are used, and the final equation is simplified to a quadratic equation. Critical moment 

formulae are initially derived assuming a single trigonometric term in the displacement 

functions, However, results of these formulae were inaccurate in certain cases, 

therefore, more refined formulae are derived, using 3 trigonometric terms. Table 1 

shows the derived formulae (single term), where 𝑀𝑐𝑟0 is the critical moment without 

prebuckling deformations, while 𝑀𝑐𝑟  is with prebuckling deformations. 

Table 1: Critical moment formulae for different boundary conditions. 

Support Case 𝑀𝑐𝑟0,1𝑡 𝑀𝑐𝑟,1𝑡 

FrFw-FrFw 𝜋

0.5𝐿
√𝐸𝐼𝑦 (𝐺𝐽 +

𝜋2𝐸𝐼𝑤
(0.5𝐿)2

) 𝑀𝑐𝑟0,1𝑡 √(1 −
𝐸𝐼𝑦
𝐸𝐼𝑥

)(1 + 2
𝐸𝐼𝑦
𝐸𝐼𝑥

)⁄  

FrPw-FrPw 3𝜋

8

𝜋

0.5𝐿
√𝐸𝐼𝑦 (𝐺𝐽 +

𝜋2𝐸𝐼𝑤
𝐿2

) 𝑀𝑐𝑟0,1𝑡 √(1 −
𝐸𝐼𝑦
𝐸𝐼𝑥

)(1 + (
9𝜋2

16
− 1)

𝐸𝐼𝑦
𝐸𝐼𝑥

)⁄  

PrFw-PrFw 3𝜋

8

𝜋

𝐿
√𝐸𝐼𝑦 (𝐺𝐽 +

𝜋2𝐸𝐼𝑤
(0.5𝐿)2

) 𝑀𝑐𝑟0,1𝑡 √(1 −
𝐸𝐼𝑦
𝐸𝐼𝑥

)(1 +
𝐸𝐼𝑦
𝐸𝐼𝑥

(
27𝜋2

256
− 1))⁄  

PrPw-FrFw 𝜋

0.6992𝐿
√𝐸𝐼𝑦 (𝐺𝐽 +

𝜋2𝐸𝐼𝑤
(0.6992𝐿)2

) 𝑀𝑐𝑟0,1𝑡 √(1 −
𝐸𝐼𝑦
𝐸𝐼𝑥

) (1 +
2𝐸𝐼𝑦
3𝐸𝐼𝑥

)⁄  

 

• Numerical solutions 

The finite element method (FEM) was used for the numerical solutions using 

the commercial software ANSYS APDL, since the classic LBA does not account for 

prebuckling deformations, it is only used for calculating 𝑀𝑐𝑟0. To consider prebuckling 

deformations, an iterative process is needed that alternate between static and buckling 

analysis: deformations are induced by static analysis, then the beam geometry is 

updated, and then LBA is performed. Furthermore, GNIA was employed. The results 
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of these two methods were found to be identical if the iterative analysis was done 

correctly. That is, if the static analysis step was conducted using a nonlinear analysis. 

This is because the nonlinear analysis captures the true curvature of the beam by 

applying the load incrementally. Generally, it was found that 10 sub-steps in the static 

analysis result in reasonably good results. 

As for the FEM models, both beam and shell element models were created, but 

it was found that special considerations need to be taken for how to define the supports. 

If the prebuckling deformations are to be accounted for, the results are dependent on 

whether the supports are interpreted in the global (i.e., original, undeflected) or local 

(i..e, deflected) coordinate system. In beam finite element, applying twisting supports 

about the global z axis creates a component of rotational fixity about the local weak axis 

of the beam (y’). At the same time, if twisting rotational fixity is applied by adding two 

cantilevers at the end of the beam as shown in Fig. 3, this will create a twisting rotation 

fixity in the local coordinate system, even after the beam deflects. Since in the analytical 

derivations the supports are interpreted in the local coordinate system, the latter 

approach is followed in the finite element models. 

 
Figure 3: Support against local twisting rotation: (a) undeformed, (b) deformed. 

In the shell element, global supports along the global y-axis create a problem 

when applying the moment as distributed pressures at the edges of the beam, since they 

take a component of the load as the beam deflects. To solve this problem, supports as 

shown in Fig. 4 are used. To reduce the localized deformations, all the nodes are 

restrained against twisting rotation, by introducing a master node which all the nodes at 

the end of the beam are rigidly linked to. These settings are for the PrPw end. To induce 

warping fixity, the nodes in the rigid region follow the master node in the (UX) as well, 

and to induce rotational fixity, the master node is restrained against (ROTY). 
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Figures 5-9 show the results of the various end support conditions using the 

different numerical and analytical methods. The figures show the increase in moment 

(i.e., difference between 𝑀𝑐𝑟  and 𝑀𝑐𝑟𝑜) for the different boundary conditions. (Note, 

GNIA has been performed for DSI sections only. Also, FrPw-FrPw support case has 

not been considered in shell FEM). The results show that there is a significant difference 

between the DSI and RHS sections, with RHS sections generally having higher effect 

of prebuckling deformations (but the results are also affected by the end supports).  

  

Figure 4: End supports and loading in shell FE model 

 
Figure 5: Critical moment increase, PrPw-PrPw, DSI (left) and RHS (right) 

 
Figure 6: Critical moment increase, FrFw-FrFw, DSI (left) and RHS (right) 
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Figure 7: Critical moment increase, PrPw-FrFw, DSI (left) and RHS (right) 

 
Figure 8: Critical moment increase, PrFw-PrFw, DSI (left) and RHS (right) 

 
Figure 9: Critical moment increase, FrPw-FrPw, DSI (left) and RHS (right) 

Regarding end supports, they have an imoprtant influence on the effect of 

prebuckling deformations. It is clear that rotation fixity has much higher effect than that 

of warping fixity. It is to highlight that in certain support conditions there is a decrease 

rather than an increase, i.e., the prebuckling deflection can decrease the critical moment, 



9 

 

unlike what is suggested in the literature. Regarding the different methods, generally 

good agreement between the methods is observed, but the agreement is better in the 

case of DSI than RHS. This is because the applied displacement approximations are less 

appropriate for sections with large torsional rigidity. Finally, the shell model results can 

be different from those from the other methods, especially for RHS sections, due to the 

localized deformations which are always present in shell FEM but excluded from beam 

models. 

• Summary 

In this chapter, closed formed solutions for the critical moment of beams 

considering prebuckling deformations, torsional rigidity, and various end support 

conditions were derived using the energy method. Furthermore, various numerical FEM 

studies were conducted to validate the analytical solutions. It was found that in general 

the results of the various methods agree, but certain considerations need to be taken if 

prebuckling deformations are considered. In the analytical solutions, it is sometimes 

important to include multiple terms in the shape functions used in the derivation to 

properly capture the critical moment. In the numerical studies, the boundary conditions 

in the FEM models (both beam and shell) need to be defined properly so that they 

remain in the local-axis coordinates. Regarding the effect of end supports, it was found 

that it significantly influences how prebuckling deformations impact the critical 

moment — and in some cases, this influence can even be negative. 

4. The effect of intermediate supports 

The next effect to be studied is the effect of intermediate lateral and torsional 

supports. Since the beam element was shown to effectively predict the results, it was 

solely used in the analysis. Moreover, as the iterative LBA method produced results 

identical to those obtained from GNIA, LBA was employed for critical moment 

calculations, while GNIA was limited to shape analysis. The analyses were also limited 

to DSI sections. Four types of intermediate lateral supports are introduced as: Top flange 

Lateral Support (TLS), Centroid Lateral Support (CLS), Bottom flange Lateral Support 

(BLS), and All section Lateral Support (ALS), the latest introducing support against the 

twisting rotation. Similar cross sections and material as in the previous Chapter were 

used, with beam lengths ranging from 2.5-50 meters to study the length effect. The 

intermediate supports were applied to the beam elements using vertical cantilevers with 

length equal to half the beam depth, as shown in Fig. 10. 
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Figure 10: Intermediate lateral support types applied on the beam element. 

 

• Effect of intermediate support types 

Figure 11 shows the effect prebuckling deformations on beams with the 

different types of intermediate lateral supports. The ALS curve follows the reference 

curve (with no intermediate supports). Other types of intermediate supports follow the 

reference curve for deeper beams, but have a sudden change in the curve at a certain 

𝐼𝑦 𝐼𝑥⁄  value (depends on the type of intermediate support), with TLS having the highest 

value, then CLS, and finally BLS. The effect can even be negative in some cases.  

 

Figure 11: Effect of intermediate lateral supports. 
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• Beams with intermediate lateral supports and various lengths 

Figures 12 and 13 show the results for beams with various lengths. The length 

has a significant effect on how the critical moment is changed by the prebuckling 

deformations, as it both changes the 𝐼𝑦 𝐼𝑥⁄  value of which the curves switch into a 

different behavior, as well as changes the values within the curves. TLS shows a 

decrease in 𝐼𝑦 𝐼𝑥⁄  threshold for reference behavior with longer beams, while CLS shows 

an increase, and BLS has a more irregular behavior. It is to note that significant 

decreases in critical moment can be experienced in certain cases. 

  

Figure 12: Effect of beam length on the moment increase: TLS (left) and CLS (right). 

 

Figure 13: Effect of beam length on the moment increase: BLS. 

• The combined effects of intermediate supports and end supports 

 Previously, the effect of end supports was studied, and then the effect of 

intermediate supports. This section combines these two effects with each other. Figures 

14 and 15 show the increase in critical moment for the different end and intermediate 

support cases. In general, the results show the same trends of the effect of end supports 

as those obtained for beams without intermediate lateral support. Furthermore, the 
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results also show the same trends for the effect of intermediate support. The combined 

effect of intermediate and end supports can cause a decrease in critical moment of up to 

35% for the investigated case (and can be even higher for shorter beams). 

  

Figure 14: The effect of end supports: ALS (left) and TLS (right).  

  

Figure 15: The effect of end supports: CLS (left) and BLS (right).  

•  Analytical studies  

It was repeatedly seen in previous sections that when introducing intermediate 

supports, the moment increase curves usually have two parts. This phenomenon can be 

explained by the buckling shapes (the shape can vary depending on the case). An 

analytical study is presented to understand this. Similar to the previous chapter, the 

energy method is employed, but the derivations are limited to the PrPw-PrPw end 

conditions to reduce complexity. Five candidates for the displacement functions are 

defined, and referred to from (a) to (e). 

It is to observe that Shape (a) is point-symmetric, with two longitudinal half-

waves in both u and φ, while the others are symmetric with one or three half-waves. In 

(a) and (b), u and φ are zero at mid-span; in (c), (d), and (e), u is zero at some cross-
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section, but φ is non-zero at mid-span. Depending on lateral support positions, some 

shapes are kinematically possible, others not. This also needs to be taken into 

consideration when selecting the proper shape function. The analytical prediction for 

the lowest critical moment is the minimum among those that belong to the kinematically 

admissible shapes. During the derivations, similar assumptions for open sections as was 

introduced in Chapter 2 are used. Following the shape functions presented, five critical 

moment formulae are given (but are not shown here). 

Table 2 shows numerical results using both analytical and numerical solutions 

for two lengths (5 and 30m) and for various beam depths.  The analytical results agree 

well with the beam model results. Regarding the shapes in the case of ALS, shape (a) 

leads to the lowest critical moment values. Moreover, in many cases the buckled shapes 

without and with prebuckling deflection are different, i.e., there is mode switch. The 

results show that sometimes the classic LTB shape is point-symmetric, which switches 

to a symmetric one, see e.g., the CLS type; however, in other cases the classic LTB 

shape is symmetric, but can be switched to point-symmetric, see e.g., BLS type. Since 

the nature of the buckled shapes, and especially the mode switch seems to have crucial 

role in the value of moment increase, a shape analysis study is conducted. 

Table 2: Analytical results 

𝐿 mm 5000 5000 5000 5000 30000 30000 30000 30000 

ℎ mm 500 300 200 150 500 300 200 150 

𝐼𝑦/𝐼𝑥  0.05 0.15 0.39 0.75 0.05 0.15 0.39 0.75 

𝑀𝑐𝑟0
(𝑎)

 kNm 2340 1554 1213 1071 175 161 155 152 

𝑀𝑐𝑟0
(𝑏)

 kNm 4573 2870 2092 1749 265 236 224 218 

𝑀𝑐𝑟0
(𝑐)

 kNm 90510 54440 36515 27626 2712 1785 1354 1153 

𝑀𝑐𝑟0
(𝑑)

 kNm 6562 5101 4526 4296 757 715 694 683 

𝑀𝑐𝑟0
(𝑒)

 kNm 750 642 670 749 218 290 358 407 

𝑀𝑐𝑟
(𝑎)

 kNm 2398 1688 1548 2159 179 175 197 305 

𝑀𝑐𝑟
(𝑏)

 kNm 4616 2976 2390 2896 267 244 255 361 

𝑀𝑐𝑟
(𝑐)

 kNm 19165 4678 1798 1400 695 277 173 181 

𝑀𝑐𝑟
(𝑑)

 kNm 3045 1515 1017 1099 351 212 156 175 

𝑀𝑐𝑟
(𝑒)

 kNm 763 659 687 967 184 165 142 169 



14 

 

𝑀𝑐𝑟0
𝐴𝐿𝑆 kNm 2340 a 1554 a 1213 a 1071 a 175 a 161 a 155 a 152 a 

𝑀𝑐𝑟
𝐴𝐿𝑆 kNm 2398 a 1688 a 1548 a 2159 a 179 a 175 a 197 a 305 a 

increase % 2.48 8.65 27.61 101.5 2.48 8.65 27.61 101.5 

inr, FEM % 2.21 8.23 26.69 95.67 2.43 8.51 27.14 92.06 

𝑀𝑐𝑟0
𝑇𝐿𝑆  kNm 2340 a 1554 a 1213 a 1071 a 175 a 161 a 155 a 152 a 

𝑀𝑐𝑟
𝑇𝐿𝑆  kNm 2398 a 1688 a 1548 a 1400 c 179 a 175 a 173 c 181 c 

increase % 2.48 8.65 27.61 30.72 2.48 8.65 11.75 19.60 

inr, FEM % 2.21 8.23 26.62 28.78 2.44 8.48 9.93 18.36 

𝑀𝑐𝑟0
𝐶𝐿𝑆 kNm 2340 a 1554 a 1213 a 1071 a 175 a 161 a 155 a 152 a 

𝑀𝑐𝑟
𝐶𝐿𝑆0 kNm 2398 a 1515 d 1017 d 1099 d 179 a 175 a 156 d 175 d 

increase % 2.48 -2.51 -16.18 2.62 2.48 8.65 0.95 15.35 

inr, FEM % 2.21 -4.25 -16.48 2.14 2.46 8.87 0.52 14.87 

𝑀𝑐𝑟0
𝐵𝐿𝑆 kNm 750 e 642 e 670 e 749 e 175 a 161 a 155 a 152 a 

𝑀𝑐𝑟
𝐵𝐿𝑆 kNm 763 e 659 e 687 e 967 e 179 a 165 e 142 e 169 e 

increase % 1.69 2.63 2.53 29.14 2.48 2.76 -8.23 11.66 

inr, FEM % 1.6 2.63 2.91 29.55 2.44 1.42 -8.96 10.39 

• Shape analysis 

To better understand the mode switch, the results are first analyzed in detail, 

focusing on when the mode switch occurs and how the buckled shapes differ depending 

on whether the switch happens or not. The results are visualized in Fig. 16, where the 

letter P indicates a point symmetric, and S indicates a symmetric shape. Each case gets 

two letters, the one on the left is when no prebuckling deformations are considered, and 

the one on the right is with prebuckling deformations. For an example, PS refers to the 

case when the shape is point symmetric without prebuckling deformations, and 

symmetric when prebuckling deformations are introduced, meaning that during the 

loading, the beam starts with a point symmetric shape, then shifts to a symmetric one. 

Several observations can be made. In the cases of TLS and CLS, the left parts 

of the curves belong to PP, while the right (quasi-parabolic) parts of the curves belong 

to PS. The 𝐼𝑦/𝐼𝑥 threshold where the two lines join, i.e., where the behavior changes 

from PP to PS, is dependent on the length, and the trends are similar to what was 

observed in the length study. 



15 

 

 

Figure 16: Overview of buckling shapes (left: TLS, middle: CLS, and right: BLS). 

The most complex case however is BLS (which was also the experience 

earlier). If the beam is long and the 𝐼𝑦/𝐼𝑥  is large, then the behavior is PS. When the 

beam is extremely long and 𝐼𝑦/𝐼𝑥  is small, the behavior is PP. For shorter beams, the 

behavior is SS, which means the buckling mode is symmetric either the prebuckling 

deflection is considered or not for low 𝐼𝑦/𝐼𝑥  ratios. These different cases can be shown 

in detail using the GNIA method, where an initial imperfect shape is defined based on 

the buckling analysis (using the first mode), and then the shapes are captured for various 

sub steps during the nonlinear analysis, as shown in Figs. 17-18. One interesting case 

was found in the CLS support, where two mode switches happen, starting from point 

symmetric, to symmetric, and then to point symmetric again, giving the PSP case. 

• Summary 

The effect of intermeidate lateral supports was investigated in this chapter. It 

was found that the intermediate lateral supports have a signifnat influence on the 

prebuckling deformation effect, since they affect the buckled shape of the beam. The 

buckled shape can be either symmetric or point-symmetric, and can be different for the 

same beam depending on whether or not the prebuckling deformations are consiered, 

suggesting a mode switch during the loading. The effect of prebuckling deformations 

has a wide range as result, ranging between an increase of up to more than 80%, to a 

decrease of up to 40% depending on: (i) type of intermediate support, (ii) the length of 

the beam, (iii) the depth of the beam, or (iv) the end supports. 
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Figure 17: Shape analysis cases: PS (left), SS (right) 

 

Figure 18: Shape analysis cases: PP (left), PSP (right) 

5: Thesis Statements 

• Thesis 1 

I have conducted an analytical study on the lateral torsional buckling of beams 

considering the prebuckling effect. I have summarized most of the available analytical 

formulae in the literature, highlighting the variations between them (even for the 

seemingly same case), showing that the solution is far from unambiguous. I rederived 

the different formulae, identifying the important factors in the analytical derivations 

which influence the critical moment formula. By doing so, I explained the differences 

between the formulae found in the literature. Furthermore, by doing the analytical study, 

I showed that several further variants can be derived (but not all of them are accurate). 

I defined the requirements for the approximations and when it is appropriate to do them. 

I have distinguished between cross sections with high and low torsional rigidities in the 
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analytical derivations. By doing so, I have shown that the torsional rigidity of the section 

has an important, but unexplored effect, that is why open and closed section beams are 

differently affected by the prebuckling effect [AGA1, AGA4]. 

• Thesis 2 

I have conducted a numerical study for the validation of the analytical 

solutions. For that purpose, I developed beam and shell finite element models, which 

are suitable for considering the prebuckling deformations. I pointed out some important 

modelling aspects that have (or might have) significant influence on the results when 

LTB with prebuckling effect is studied. I have shown that classical models used for 

LBA might not be suitable for an FEM analysis that consider prebuckling deformations, 

and special considerations must be made in order for the results to be comparable with 

the analytical solutions (namely: loading application, supports in beam and shell FEM 

models, and nonlinear static analysis in iterative LBA) [AGA2]. 

I have used two types of analysis for the numerical solutions. First, I proposed 

an iterative LBA methods that alternate between static analysis for inducing prebuckling 

deformations, and linear buckling analysis that obtain a critical moment value. I have 

shown that convergence occurs, leading to critical moment value that’s close to the 

analytical solutions. I have shown that using a linear analysis in the static analysis step 

produces error, and non-linear analysis lead to better results. Then, I have conducted 

GNIA with very small imperfections, leading to critical moment values that are very 

close to the results from iterative LBA method, validating the use of such an algorithm. 

I have compared the shell and beam FEM methods, highlighting that the effect of non-

beam-like deformations is significantly magnified when prebuckling deformations are 

considered [AGA2, AGA4]. 

• Thesis 3 

I have considered other boundary conditions than the simple forked support 

case which was mostly discussed in the literature. I have derived closed formed 

analytical solutions for various boundary conditions, and I have created numerical 

models for these different boundary conditions cases.  I have conducted a parametric 

study using the proposed analytical and numerical solutions. I compared the results from 

these methods accounting for the combined effects of (i) prebuckling deformations, (ii) 

boundary conditions, and (iii) torsional rigidity [AGA2, AGA5, AGA6]. 
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Using the results, I have shown that the different methods used agree to an 

acceptable degree, validating the derived analytical solutions for most cases, with some 

inaccuracies, especially when rotational fixities are introduced. I have shown that the 

source of these inaccuracies is the approximative nature of the shape functions used. I 

have derived enhanced solutions based on more accurate shape functions, giving more 

accurate results. I have shown that the end supports have a significant effect on how the 

prebucking deformations influence the solution, highlighting that proposed formulae in 

the literature are only valid for the simple forked support case.  

I have shown that unlike what is suggested by literature, the effect of 

prebuckling deformations is not always positive, and can be negative in certain support 

cases. I have shown that the length of the beam influences the solution in some boundary 

condition cases, which is present in the FEM solution, but can only be captured in the 

analytical solution if the enhanced shapes are used. I have shown that longer beams 

require more terms in the shape functions to produce accurate results. I have shown that 

the effect of non-beam-like deformations in the shell element solution is further 

heightened when fixity is introduced to the twisting rotation at the end of the beam 

[AGA2, AGA6]. 

• Thesis 4 

I have considered the intermediate lateral and torsional supports, I have derived 

analytical closed formed solutions for the critical moment of beams considering 

prebuckling deformations for four cases: (i) lateral support at the top flange (ii) lateral 

support at the bottom flange (iii) lateral support at the centroid, and (iv) lateral support 

with twisting rotation fixity. I have created numerical models for these cases and 

conducted a parametric study using the various methods [AGA3, AGA7]. 

Using the results, I have shown that the location of the intermediate support has 

a drastic effect on how the prebuckling deformations affect the solution. The differences 

can vary between a significant increase in the critical moment to a significant decrease 

(compared to the case when prebuckling deformations are not considered) depending 

on which kind of intermediate support is used. I have shown that the reason for these 

discrepancies is in the buckling shape, which vary depending on the type of intermediate 

support. I have shown using both the LBA and the analytical solutions that the buckling 

shape can differ depending on whether or not the prebuckling deformations are 

considered, suggesting the presence of a ‘mode switch’ as the load increases. 



19 

 

I have further investigated the mode switch behavior using the GNIA method, 

plotting and observing the transitioning from one mode to another during the non-linear 

analysis, and confirming the mode-switch phenomena. I have investigated the effect of 

the initial shape and initial imperfection value on the mode-switch, showing that if the 

initial imperfection value is small, the beam will always switch to the same shape 

regardless of the initial shape, but larger initial imperfection values affect the final shape 

as well as the critical moment value. Finally, I have studied the practical effectiveness 

of the use of intermediate lateral supports, highlighting the variations between little to 

know advantage, to high advantage, depending on the type of the intermediate support, 

the cross section, and length of the beam [AGA3, AGA7]. 
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