Multiscale finite element analysis of timber beams reinforced with CFRP

Elsődleges fülek

Erre a témakiírásra nem lehet jelentkezni.
Nyilvántartási szám: 
19/06
Témavezető neve: 
Témavezető e-mail címe:
lengyel.andras@emk.bme.hu
A témavezető teljes publikációs listája az MTMT-ben:
A téma rövid leírása, a kidolgozandó feladat részletezése: 
Composite materials play an increasing role in engineering. In structural engineering, fibre reinforced plastics (FRP) composites are used in various applications. They are made of high-strength fibres (mostly carbon or glass) embedded in a matrix (mostly epoxy), and provide formidable strength in fibre direction. Applications include reinforcement of structural elements made of other materials, such as concrete, steel, timber in order to enhance structural behaviour. The combined behaviour of such composite structures requires both theoretical research and practical application experience. Research on reinforcement of timber include experimental work on old or new timber structures, analytical and numerical computations, and other special problems. The inhomogeneous, nonlinear, and highly anisotropic nature of wood as well as the inherent inhomogeneous characteristics of FRP materials pose major challenges in research. Since most researchers focus on a single or sometimes a few wood species, especially those locally available or significant in the local industry, the results represent a large spectrum, and sufficient data are not available in some cases.
The proposed research deals with Norway spruce, a species native to the region and plays an important role in timber construction. The behaviour of solid sawn spruce beams fitted with carbon fibre reinforced plastic (CFRP) sheets are to be analysed. Measurement data are available from physical experiments performed with four-point bending loading on a large sample. The aim of the research is to do finite element modelling of the behaviour of both the wood material and the reinforcement material using the measurements for verification. The modelling is focusing on the details on various levels. The composite structure of the fibre reinforced plastic needs to be modelled both as a homogenised piece on the large scale and as a compound of various constituents to identify key factors in the behaviour. The wood material is naturally inhomogeneous, anisotropic, and contains randomly distributed features influencing the behaviour, such as knots or other defects. Modelling on different levels should incorporate appropriate handling of material properties and anisotropy as well as modelling techniques. The task requires the application of finite element software, e.g. ANSYS and numerical tools, e.g. MATLAB. The expected outcome of the research is to gain deeper understanding and modelling capability of Norway spruce beams reinforced with CFRP lamellae on various levels.
A téma meghatározó irodalma: 
1. J. Fiorelli, A. Alves Dias, Glulam beams reinforced with FRP externally-bonded: theoretical and experimental evaluation, Materials and Structures (2011) 44:1431–1440.
2. A. D’Ambrisi, F. Focacci, R. Luciano, Experimental investigation on flexural behavior of timber beams repaired with CFRP plates, Composite Structures 108 (2014) 720–728.
3. K.-U. Schober, A. M. Harte, R. Kliger, R. Jockwer, Q. Xu, J.-F. Chen, FRP reinforcement of timber structures, Construction and Building Materials 97 (2015) 106–118.
4. M. Khelifa, S. Auchet, P.-J. Méausoone, A. Celzard, Finite element analysis of flexural strengthening of timber beams with Carbon Fibre-Reinforced Polymers, Engineering Structures 101 (2015) 364–375.
5. P. de la Rosa García, A. C. Escamilla, M. N. G. García, Analysis of the flexural stiffness of timber beams reinforced with carbon and basalt composite materials, Composites Part B 86 (2016) 152–159.
6. F.J. Rescalvo, I. Valverde-Palacios, E. Suarez, A. Gallego, Experimental and analytical analysis for bending load capacity of old timber beams with defects when reinforced with carbon fiber strips, Composite Structures 186 (2018) 29–38.
7. A. Vahedian, R. Shrestha, K. Crews, Analysis of externally bonded Carbon Fibre Reinforced Polymers sheet to timber interface, Composite Structures 191 (2018) 239–250.
A téma hazai és nemzetközi folyóiratai: 
1. Composite Structures (Scopus, Sci)
2. Construction and Building Materials (Scopus, Sci)
3. Engineering Structures (Scopus, Sci)
4. Composites Part B (Scopus, Sci)
5. International Journal of Solids and Structures (Scopus, Sci)
6. Periodica Polytechnica – Civil Engineering (Scopus, WoS)
7. Mechanics Based Design of Structures and Machines (SCIE)
8. International Journal of Adhesion and Adhesives (Scopus, Sci)
A témavezető utóbbi tíz évben megjelent 5 legfontosabb publikációja: 
1. Lengyel A, Gáspár Z, Tarnai T, The Roundest Polyhedra with Symmetry Constraints, Symmetry 9:(3) Paper 41. 15 p. (2017)
2. Krisztián Andor, András Lengyel, Rudolf Polgár, Tamás Fodor, Zsolt Karácsonyi, Experimental and statistical analysis of spruce timber beams reinforced with CFRP fabric, Construction and Building Materials 99: pp. 200-207. (2015)
3. Pintér Erika, Lengyel András, Lógó János, Structural Topology Optimization with Stress Constraint Considering Loading Uncertainties, Periodica Polytechnica-Civil Engineering 59:(4) pp. 559-565. (2015)
4. Krisztian Andor, Andras Lengyel, CFRP reinforced timber, 3rd International Conference on Competitive Materials and Technology Processes Miskolc-Lillafüred, Hungary October 6-11, 2014 , The 1st International Symposium on Innovative Construction Materials , Oral Presentations (2014)
5. Tarnai T, Lengyel A, A remarkable structure of Leonardo and a higher-order infinitesimal mechanism, Journal of Mechanics of Materials and Structures 6:(1-4) pp. 591-604. (2011)
A témavezető fenti folyóiratokban megjelent 5 közleménye: 
1. K. Andor, A. Lengyel, R. Polgár, T. Fodor, Z. Karácsonyi. Experimental and statistical analysis of spruce timber beams reinforced with CFRP fabric. Construction and Building Materials 99 (2015) 200–207.
2. Pintér Erika, Lengyel András, Lógó János. Structural Topology Optimization with Stress Constraint Considering Loading Uncertainties. Periodica Polytechnica-Civil Engineering 59:(4) pp. 559-565. (2015)
3. Lengyel A, You Z. Bifurcations of SDOF mechanisms using catastrophe theory. International Journal of Solids and Structures 41:(2) pp. 559-568. (2004)
4. Lengyel A, You Z. Analogy between bifurcations in stability of structures and kinematics of mechanisms. Mechanics Based Design of Structures and Machines 31:(4) pp. 491-507. (2003)
5. Lengyel A, Gaspar Z. Classification of Compatibility Paths of SDOF Mechanisms. International Journal of Solids and Structures 42:(1) pp. 21-36. (2005)

A témavezető eddigi doktoranduszai

Saad Khaled (2018/2022/2023)
Státusz: 
beküldött